Skip to main content

Advertisement

Log in

Assessment of Carbon Fibre Composite Fracture Fixation Plate Using Finite Element Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress shielding in the layer of bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer.

In this study a novel forearm internal fracture fixation plate made from short carbon fibre reinforced plastic (CFRP) was used in an attempt to address the problem. Accordingly, it has been possible to analyse the stress distribution in the composite plates using finite-element modelling.

A three-dimensional, quarter-symmetric finite element model was generated for the plate system. The stress state in the underlying bone was examined for several loading conditions. Based on the analytical results the composite plate system is likely to reduce stress-shielding effects at the fracture site when subjected to bending and torsional loads. The design of the plate was further optimised by reducing the width around the innermost holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.

Similar content being viewed by others

REFERENCES

  1. Huang, T. L., C. K. Huang, J. K. Yu, F. Y. Chiu, H. T. Liu, C. L. Liu, T. H. Chen. Operative treatment of intra-articular distal radius fractures using the small AO external fixation device. J Chin Med Assoc 68(10):474–478, 2005.

    Article  PubMed  Google Scholar 

  2. Uchikura, C., J. Hirano, F. Kudo, K. Satomi, T. Ohno. Comparative study of nonbridging and bridging external fixators for unstable distal radius fractures. J Orthop Sci. 9(6):560–565, 2004.

    Article  PubMed  Google Scholar 

  3. Anderson, L. D.. Compression Plate fixation and the effects of different type of internal fixation on structure healing. J Bone Joint Surg 47A:191–208, 1965.

    Google Scholar 

  4. Terjesen, T. and K. Apalset. The influence of different Degrees of Stiffness of Fixation Plates on Experimental Bone Healing. J Ortho. Res. 6:293–299, 1988.

    Article  CAS  Google Scholar 

  5. Terjesen, T.. Bone Healing after metal Plate Fixation and External Fixation. Acta Orthop Scand 55:69–77, 1984.

    PubMed  CAS  Google Scholar 

  6. Inoue, N. and Y. Hirasawa. Composite materials in Bio-medical engineering, J. Materiaux & Techniques 82:(4–5) 23–26, 1994.

    CAS  Google Scholar 

  7. Tonino, A. J., C. L. Davidson, P. J. Klopper, L. A. Linclau. Protection from stress in bone and its effects: experiments with stainless steel and plastic plates in dogs. J. Bone Joint Surg 58-B:1107–1113, 1984.

    Google Scholar 

  8. Claes, L., U. Palme, U. Kirschbaum In: Biomechanics: Principles and applications, edited by R. Huiske, D. Van Campen and J. De Wijn. The Hague: Martinus Nijhoff Publisher, 1982, 325–330.

  9. Grijpma, D. W., A. J. Nihenhuis, P. G. T. van Wijk, A. J. Pennings. High impact strength as polymerized PLLA. Polymer bulletin 29:571–578, 1992.

    Article  CAS  Google Scholar 

  10. Uhthoff, K. H., F. L. Dubuc. Bone structure changes in the dog under rigid internal fixation. Clin Orthop 81:165–170, 1971.

    Article  PubMed  CAS  Google Scholar 

  11. Woo, S. L., W. H. Akeson, R. D. Coutts, L. Rutherford, D. Doty, G. F. Jemmott, D. Amiel. A comparison of cortical bone atrophy secondary to fixation with plates of larger differences in bending stiffness. J Bone Joint Surg 58-A:190–195, 1976.

    Google Scholar 

  12. Tayton, K., C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings. The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors. J Bone joint Surg 64-B:105–111, 1982.

    Google Scholar 

  13. Uhthoff, H. K., D. I. Bardos, M. Liskova-Kiar. The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. J bone Joint Surg 63-B:427–434, 1981.

    CAS  Google Scholar 

  14. Woo, S. L., K. S. Lothringer, W. H. Akeson, R. D. Coutts, Y. K. Woo, B. R. Simon, M. A. Gomes. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1:431–439, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Manninen, M. J., U. Paivarinta, R. Taurio, P. Tormala, R. Suuronen, J. Raiha, P. Rokkanen, H. Patiala. Polylactide screws in the fixation of olecranon osteotomies: a mechanical study in sheep. Acta Orthop Scand 63:437–4342, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Suuronen, R., T. Pohjonen, L. Tech, J. Vasenius, S. Vainionpaa. Comparison of absorbable self-reinforced multilayer poly-l-lactide and metallic plates for the fixation of mandibular body osteotomies. J Oral Maxillofac Surg 50:255–262, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Cochram, G. V. B., R. V. Palmier and Zickel. Re. Aramid-Epoxy composite internal fixation plates- A pilot study. J. Clini. Biomechanic 9(5):315–322, 1994

    Article  Google Scholar 

  18. Hofman, G. O.. Biodegradable implant in Orthopaedic surgery. J. Clin. Mater., UK 10(1–2):75–80, 1992.

    Article  Google Scholar 

  19. Tayton, K., G. Philips and Z. Ralis.Long Term Effect of Carbon Fibre on Soft Tissues. J of Bone and Joint Surgery 64b:112, 1982.

    Google Scholar 

  20. Williams, D. F., A. McNamara and R. M. Turner. Potential of PEEK and CFRPEEK in medical application. J. Materials Sciences Letters 6:188–190, 1987

    Article  CAS  Google Scholar 

  21. Farling, G. M. and K. Greer. An improved bearing materials for joint replacement prosthesis: Carbon fibre reinforced UHMWPE. GW Hastings and DF Williams (Eds) Mechanical Properties of Biomaterials, John Wiley & Sons Ltd, 1980, p.53–64.

  22. Claes, L.. The Mechanical and Morphological Properties of Bone Beneath Internal Fixation Plates of Differing Rigidity J. Orthopaedic Research 17(2):170–177, 1989.

    Article  Google Scholar 

  23. Foux, A., A. Yeadon, H. K. Uhthoff. Improved fracture healing with less rigid plate: a biomechanical study in dogs. Clin Orthop Rel Res 1995.

  24. Yeadon, A., A. Foux, H. K. Uhthoff, D. Russel Influence of axially flexible plates on bone healing: a biomechanical study in canine femora, Proc Can Med & Biol Eng Soc Meeting 1994; 34–35.

  25. Steinmann, S. C. Characteristics of an Ideal Implant Material for Stable Fixation, in Current Concepts of internal Fixation of Fractures, UK, Uhthoff (Ed), Springer, Verlag, New York, 93–99, 1980.

  26. Szivek, J. A. and R. A. Yapp. A Testing Technique allowing Cyclic Application of Axial, Bending, and Torque Loads to Fracture Plates to Examine Screw loosening. J Biomed Mater Res, Appl Biomat 23(A1): 105–116, 1989.

    Article  CAS  Google Scholar 

  27. Uhthoff, H. K.. Mechanical factors influencing the holding power of screws in compact bone. J Bone Joint Surg 55B:633–639, 1973.

    Google Scholar 

  28. Vangseness, D. R. et al. In vitro Evaluation of the loosening Characteristics of self tapped and non-self tapped cortical bone screws. Clin Orthop. Res 157:279–286, 1981.

    Google Scholar 

  29. Zand, M. S. et al. “Fatigue failure of cortical bone screws”, 16, 305–31, 1983.

  30. Hidaka, S. and R. B. Gustilo. Fracture of bones of the forearm after plate removal. J Bone Joint Surg AM 66:1241–1243, 1984.

    PubMed  CAS  Google Scholar 

  31. Rumball, K. and M. Finnegan. Refractures after forearm plate removal. J Ortho Trauma 4:124–129, 1990.

    Article  CAS  Google Scholar 

  32. Cheal, E. J., W. C. Hayes, A. A. White, S. M. Perren. Stress analysis of compression plate fixation and its effects on long bone remodeling. J. Biomesh 18:141–150, 1985.

    CAS  Google Scholar 

  33. Koo, T. K. K., E. Y. S. Chao and A. F. T. Mak. Fixation stiffness of Dynafix unilateral external fixator in neutral and non-neutral configurations. Bio-Medical Materials and Engineering 15(6):433–444, 2005.

    PubMed  CAS  Google Scholar 

  34. Beaupre, G. S., D. R. Carter, T. E. Orr, J. Csonggradi The importance of friction interfaces in mathematical models of plated long-bones. Trans 33rd Orthop Res Soc Meeting 1986: 476.

  35. Nazre, A., S. Lin Clinical and Laboratory Performance of Bone Plates, STP 1217. J. HarveyP. and F. Games (eds), ASTM Philadelphia. 1994, 53–64.

  36. Cohen, B., D. A. Hoeltzel. Design optimization of an aramid fibre composite internal fixation plate. Advances in Bioengineering, ASME 1992: 23–25.

  37. Schumer, E. D., B. M. Leslie. Fragment-specific fixation of distal radius fractures using the Trimed device. Tech Hand Up Extrem Surg 9(2):74–83, 2005.

    Article  PubMed  Google Scholar 

  38. Rikli, D. A., R. Curtis, C. Schilling, J. Goldhahn. The potential of bioresorbable plates and screws in distal radius fracture fixation. Injury 33 (Suppl 2):B77–B83, 2002.

    Article  PubMed  Google Scholar 

  39. Stoffel, K., U. Dieter, G. Stachowiak, A. Gachter, M. S. Kuster. Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury 34(Suppl 2):B11–B19, 2003.

    Article  PubMed  Google Scholar 

  40. Ganesh, V. K., K. Ramakrishna, D. N. Ghista. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed Eng Online 27(4):46, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saidpour, S.H. Assessment of Carbon Fibre Composite Fracture Fixation Plate Using Finite Element Analysis. Ann Biomed Eng 34, 1157–1163 (2006). https://doi.org/10.1007/s10439-006-9102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9102-z

Keywords

Navigation