Skip to main content

Advertisement

Log in

Nonlinear Viscoelastic Behavior of Human Knee Ligaments Subjected to Complex Loading Histories

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

The nonlinear viscoelastic structural response of the major human knee ligaments when subjected to complex loading histories is investigated, with emphasis on the collateral ligaments. Bone-ligament-bone specimens are tested in knee distraction loading, where the ligaments are in the anatomical position corresponding to a fully extended knee. Temporal nonlinearities for time scales in the range of \(1 \le t \le 500\,\)s are characterized with a dedicated series of loading histories. In particular, the response to several complex sequences of step-and-hold tests and loading-unloading cycles is investigated. The separability of the time and deformation dependent behavior, as assumed for the often used quasi linear viscoelastic (QLV) theory, is found to be insufficient for describing the response in the time range considered. Non-recoverable inelastic flow is observed in this time range. A phenomenological 1-dimensional nonlinear viscoelastic model that qualitatively describes the experimentally observed inelastic phenomena is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.

Similar content being viewed by others

REFERENCES

  1. Bhalla, K., D. Bose, N. J. Madeley, J. Kerrigan, J. Crandall, D. Longhitano, and Y. Takahashi. Evaluation of the response of mechanical pedestrian knee joint impactors in bending and shear loading. 18th ESV 2003.

  2. Bilston, L. E., Z. Liu, and N. Phan-Thien. Large strain behaviour of brain tissue in shear: Some experimental data and differential constitutive model. Biorheology 38:335–345, 2001.

    PubMed  CAS  Google Scholar 

  3. Bonifasi-Lista, C., S. P. Lake, M. S. Small, and J. A. Weiss. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. Journal of Orthopaedic Research 23:67–76, 2005.

    Article  PubMed  Google Scholar 

  4. Boyce, M. C., E. L. Montagut, and A. S. Argon. The effects of thermomechanical coupling on the cold drawing process of glassy polymers. Polymer Engineering and Science 32:1073–1085, 1992.

    Article  CAS  Google Scholar 

  5. Butler, D. L., M. D. Kay, and D. C. Stouffer. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of Biomechanics 19:425–432, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Van Dommelen, J. A. W., B. J. Ivarsson, M. Minary Jolandan, S. A. Millington, M. Raut, J. R. Kerrigan, J. R. Crandall, and D. R. Diduch. Characterization of the rate dependent mechanical properties and failure of human knee ligaments. SAE Transactions, Journal of Passenger Cars – Mechanical Systems 114, (2006), SAE paper 2005-01-0293, 2005.

  7. Van Dommelen, J. A. W., M. Minary Jolandan, B. J. Ivarsson, S. A. Millington, M. Raut, J. R. Kerrigan, J. R. Crandall, and D. R. Diduch. Pedestrian injuries: viscoelastic properties of human knee ligaments at high loading rates. Traffic Injury Prevention 6:278–287, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Fung, Y. C.. Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1981.

    Google Scholar 

  9. Funk, J., G. Hall, J. R. Crandall, and W. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. Journal of Biomechanical Engineering 122:15–22, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby Jr.. Nonlinear viscoelasticity in rabbit medial collateral ligament. Annals of Biomedical Engineering 32:306–312, 2004.

    Article  PubMed  Google Scholar 

  11. Hollis, J. M., R. M. Lyon, J. P. Marcin, S. Horibe, E. B. Lee, and S. L.-Y. Woo. Effect of age and loading axis on the failure properties of the human ACL. Transactions of the Orthopaedic Research Society 13:81, 1988.

    Google Scholar 

  12. Johnson, G. A., G. A. Livesay, S. L.-Y. Woo, and K. R. Rajagopal. A single integral finite strain viscoelastic model of ligaments and tendons. Journal of Biomechanical Engineering 118:221–226, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, R. S., N. S. Nawana, M. J. Pearcy, D. J. A. Learmonth, D. R. Bickerstaff, J. J. Costi, and R. S. Paterson. Mechanical properties of the human anterior cruciate ligament. Clinical Biomechanics 10:339–344, 1995.

    Article  PubMed  Google Scholar 

  14. Kennedy, J. C., R. J. Hawkins, R. B. Willis, and K. D. Danylchuck. Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. Journal of Bone and Joint Surgery,American Volume 58:350–355, 1976.

    CAS  Google Scholar 

  15. Kerrigan, J. R., B. J. Ivarsson, D. Bose, N. J. Madeley, S. A. Millington, K. S. Bhalla, and J. R. Crandall. Rate-sensitive constitutive and failure properties of human collateral ligaments, IRCOBI Conference on the Biomechanics of Impacts, 2003.

  16. Leonov, A.. Non equilibrium thermodynamics and rheology of viscoelastic polymer media, Rheologica Acta 15:85–98, 1976.

    Article  Google Scholar 

  17. Liu, Z., and L. E. Bilston. Large deformation shear properties of liver tissue. Biorheology 39:735–742, 2002.

    PubMed  Google Scholar 

  18. Marinozzi, G., S. Pappalardo, and R. Steindler. Human knee ligaments: mechanical tests and ultrastructural observations. Italian Journal of Orthopaedics and Traumatology 9:231–240, 1983.

    PubMed  CAS  Google Scholar 

  19. Pioletti, D. P. and L. R. Rakotomanana. On the independence of time and strain effects in the stress relaxation of ligaments and tendons. Journal of Biomechanics 33:1729–1732, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Provenzano, P., R. Lakes, T. Keenan, and R. Vanderby Jr.. Nonlinear ligament viscoelasticity. Annals of Biomedical Engineering 29:908–914, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. Journal of Biomechanical Engineering 120:757–763, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Sarver, J. J., P. S. Robinson, and D. M. Elliott. Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments. Journal of Biomechanical Engineering 125:754–758, 2003.

    Article  PubMed  Google Scholar 

  23. Takhounts, E. G., J. R. Crandall, and B. T. Matthews. Shear properties of brain tissue using nonlinear Green-Rivlin viscoelastic constitutive equation. Proceedings of the 27 th International Workshop on Human Subjects for Biomechanical Research, 1999.

  24. Tervoort, T. A., R. J. M. Smit, W. A. M. Brekelmans, and L. E. Govaert. A constitutive equation for the elasto-viscoplastic deformation of glassy polymers. Mechanics of Time dependent Materials 1:269–291, 1998.

    Article  Google Scholar 

  25. Thornton, G. M., A. Oliynyk, C. B. Frank, N. G. Shrive. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. Journal of Orthopaedic Research 15:652–656, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Thornton, G. M., N. G. Shrive, and C. B. Frank. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. Journal of Orthopaedic Research 20:967–974, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Toms, S. R., G. J. Dakin, J. E. Lemons, and A. W. and Eberhardt. Quasi-linear viscoelastic behavior of the human periodontal ligament. Journal of Biomechanics 35:1411–1415, 2002.

    Article  PubMed  Google Scholar 

  28. Trent, P. S., P. S. Walker, and B. Wolf. Ligament length patterns, strength, and rotational axes of the knee joint. Clinical Orthopaedics and Related Research 2:263–270, 1976.

    Google Scholar 

  29. Weiss, J. A., J. C. Gardiner, and C. Bonifasi-Lista. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. Journal of Biomechanics 35:943–950, 2002.

    Article  PubMed  Google Scholar 

  30. Woo, S. L.-Y., M. A. Gomez, and W. H. Akeson. The time and history dependent viscoelastic properties of the canine medial collateral ligament. Journal of Biomechanical Engineering 103:293–298, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Woo, S. L.-Y., J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. American Journal of Sports Medicine 19:217–225, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Woo, S. L.-Y., C. A. Orlando, J. F. Camp, and W. H. Akeson. Effects of postmortem storage by freezing on ligament tensile behavior. Journal of Biomechanics 19:399–404, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. W. van Dommelen PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dommelen, J.A.W., Jolandan, M.M., Ivarsson, B.J. et al. Nonlinear Viscoelastic Behavior of Human Knee Ligaments Subjected to Complex Loading Histories. Ann Biomed Eng 34, 1008–1018 (2006). https://doi.org/10.1007/s10439-006-9100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9100-1

Keywords

Navigation