Skip to main content

Advertisement

Log in

In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry

  • OriginalPaper
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Pressure–flow relationships measured in human plastinated specimen of both nasal cavities and maxillary sinuses were compared to those obtained by numerical airflow simulations in a numerical three-dimensional reconstruction issued from CT scans of the plastinated specimen. For experiments, flow rates up to 1500 ml/s were tested using three different gases: HeO2, Air, and SF6. Numerical inspiratory airflow simulations were performed for flow rates up to 353 ml/s in both the nostrils using a finite-volume-based method under steady-state conditions with CFD software using a laminar model. The good agreement between measured and numerically computed total pressure drops observed up to a flow rate of 250 ml/s is an important step to validate the ability of CFD software to describe flow in a physiologically realistic binasal model. The major total pressure drop was localized in the nasal valve region. Airflow was found to be predominant in the inferior median part of nasal cavities. Two main vortices were observed downstream from the nasal valve and toward the olfactory region. In the future, CFD software will be a useful tool for the clinician by providing a better understanding of the complexity of three-dimensional breathing flow in the nasal cavities allowing more appropriate management of the patient's symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.

Similar content being viewed by others

References

  1. Bridger, G. P., and D. F. Proctor. Maximum nasal inspiratory flow and nasal resistance. Ann. Otol. Rhinol. Laryngol. 79:481–488, 1970.

    PubMed  CAS  Google Scholar 

  2. Castro, F., P. Castro, A. Delgado, C. Méndez, and C. Cenjor. Computational fluid dynamics simulations of the airflow in the human nasal cavity. In: Proceedings of the 7th International Symposium on Fluid Control, Measurement and Visualization, 2003.

  3. Durand, M. Réalisation et validation d’un modèle plastiné des cavités nasosinusiennes pour l’étude de la diffusion des aérosols. Saint-Étienne: DEA de Génie Biologique et Médical, 1999.

  4. Durand, M., P. Rusch, D. Granjon, G. Chantrel, J. M. Prades, F. Dubois, D. Esteve, J. F. Pouget, and C. Martin. Preliminary study of the deposition of aerosol in the maxillary sinuses using a plastinated model. J. Aerosol. Med. 14:83–93, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Elad, D., R. Liebenthal, B. L. Wenig, and S. Einav. Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31:585–592, 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Fodil, R., L. Brugel-Ribere, C. Croce, G. Sbirlea-Apiou, C. Larger, J. F. Papon, C. Delclaux, A. Coste, D. Isabey, and B. Louis. Inspiratory flow in the nose: A model coupling flow and vasoerectile tissue distensibility. J. Appl. Physiol. 98:288–295, 2005.

    Article  PubMed  Google Scholar 

  7. Girardin, M., E. Bilgen, and P. Arbour. Experimental study of velocity fields in a human nasal fossa by laser anemometry. Ann. Otol. Rhinol. Laryngol. 92:231–236, 1983.

    PubMed  CAS  Google Scholar 

  8. Hahn, I., P. W. Scherer, and M. M. Mozell. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 75:2273–2287, 1993.

    PubMed  CAS  Google Scholar 

  9. Hilberg, O., and O. F. Pedersen. Acoustic rhinometry: Influence of paranasal sinuses. J. Appl. Physiol. 80:1589–1594, 1996.

    PubMed  CAS  Google Scholar 

  10. Hirschberg, A., R. Roithmann, S. Parikh, H. Miljeteig, and P. Cole. The airflow resistance profile of healthy nasal cavities. Rhinology 33:10–13, 1995.

    PubMed  CAS  Google Scholar 

  11. Hopkins, L. M., J. T. Kelly, A. S. Wexler, and A. K. Prasad. Particle image velocimetry measurements in complex geometries. Exp. Fluids 29:91–95, 2000.

    Article  Google Scholar 

  12. Hörschler, I., M. Meinke, and W. Schröder. Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32:39–45, 2003.

    Article  Google Scholar 

  13. Jones, N. The nose and paranasal sinuses physiology and anatomy. Adv. Drug Deliv. Rev. 51:5–19, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Kelly, J. T., A. K. Prasad, and A. S. Wexler. Detailed flow patterns in the nasal cavity. J. Appl. Physiol. 89:323–337, 2000.

    PubMed  CAS  Google Scholar 

  15. Keyhani, K., P. W. Scherer, and M. M. Mozell. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117:429–441, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Lindemann, J., T. Keck, K. M. Wiesmiller, G. Rettinger, H. J. Brambs, and D. Pless. Numerical simulation of intranasal air flow and temperature after resection of the turbinates. Rhinology 43:24–28, 2005.

    PubMed  Google Scholar 

  17. Louis, B., R. Fodil, S. Jaber, J. Pigeot, P.-H. Jarreau, F. Lofaso, and D. Isabey. Dual assessment of airway area profile and respiratory input impedance from a single transient wave. J. Appl. Physiol. 90:630–637, 2001.

    PubMed  CAS  Google Scholar 

  18. Louis, B., G. Glass, B. Kresen, and J. Fredberg. Airway area by acoustic reflection: the two-microphone method. J. Biomech. Eng. 115:278–285, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Naftali, S., M. Rosenfeld, M. Wolf, and D. Elad. The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33:545–553, 2005.

    Article  PubMed  Google Scholar 

  20. Papon, J. F., L. Brugel-Ribere, R. Fodil, C. Croce, C. Larger, M. Rugina, A. Coste, D. Isabey, F. Zerah-Lancner, and B. Louis. Nasal wall compliance in vasomotor rhinitis. J. Appl. Physiol. doi:10.1152/japplphysiol.00575.2005, 2005.

  21. Park, K. I., C. Brücker, and W. Limberg. Experimental study of velocity fields in a model of human nasal cavity by DPIV. Laser anemometry, advances and applications. In: Proceeding of the 7th International Conference, Germany, September 8–11, 1997.

  22. Proctor, D. F. Physiology of the upper airway. In: Handbook of Physiology. Respiration I, edited by W. O. Fenn and H. Rahn. Washington, DC: American Physiological Society, 1964, pp. 309–345.

  23. Proctor, D. F. Airborne disease and the upper respiratory tract. Bacteriol. Rev. 30:498–513, 1966.

    PubMed  CAS  Google Scholar 

  24. Proctor, D. F. The upper airways. I. Nasal physiology and defense of the lungs. Am. Rev. Respir. Dis. 115:97–129, 1977.

    PubMed  CAS  Google Scholar 

  25. Schreck, S., K. J. Sullivan, C. M. Ho, and H. K. Chang. Correlations between flow resistance and geometry in a model of the human nose. J. Appl. Physiol. 75:1767–1775, 1993.

    PubMed  CAS  Google Scholar 

  26. Simmen, D., J. L. Scherrer, K. Moe, and B. Heinz. A dynamic and direct visualization model for the study of nasal airflow. Arch. Otolaryngol. Head Neck Surg. 125:1015–1021, 1999.

    PubMed  CAS  Google Scholar 

  27. Subramaniam, R. P., R. B. Richardson, K. T. Morgan, J. S. Kimbell, and R. A. Guilmette. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10:91–120, 1998.

    Article  CAS  Google Scholar 

  28. Sullivan, K. J., and H. K. Chang. Steady and oscillatory transnasal pressure–flow relationships in healthy adults. J. Appl. Physiol. 71:983–992, 1991.

    PubMed  CAS  Google Scholar 

  29. von Hagens, G., K. Tiedemann, and W. Kriz. The current potential of plastination. Anat. Embryol. (Berl.) 175:411–421, 1987.

    Article  CAS  Google Scholar 

  30. Weinhold, I., and G. Mlynski. Numerical simulation of airflow in the human nose. Eur. Arch. Otorhinolaryngol. 261:452–455, 2004.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was part of a collaborative project entitled R-MOD and supported by grants from Air Liquide and the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Louis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croce, C., Fodil, R., Durand, M. et al. In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry. Ann Biomed Eng 34, 997–1007 (2006). https://doi.org/10.1007/s10439-006-9094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9094-8

Keywords

Navigation