Skip to main content

Advertisement

Log in

Fibroblast Growth Factor-2 Augments Recombinant Human Bone Morphogenetic Protein-2-Induced Osteoinductive Activity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The osteoinductive activity induced by recombinant human BMP-2 (rhBMP-2) blunts proportionately as the recipient ages. In order to compensate for this bluntness administration of fibroblast growth factor-2 (FGF-2) has been considered. The aim of this study was to determine whether FGF-2 administration augments osteoinductive activity caused by rhBMP-2 and to evaluate the effect of aging on bone formation induced by coadministration of rhBMP-2 and FGF-2. Sixty-four Wistar strain male rats of 8-week-old (prepubertal) and 16-week-old (postpubertal) received bone defects bilaterally in the parietal bone and the defects were filled by a polylactic acid polyglycolic acid copolymer/gelatin sponge (PGS) impregnated with rhBMP-2 plus 0 ng, 25 ng, and 250 ng FGF-2 (n=10 in each). At 2 weeks after grafting, the new bone volume seemed to be larger in the rhBMP-2+FGF-2 groups than in the rhBMP-2 alone group. At 4 weeks, the new bone formation was linked to the adjacent original bone. In the prepubertal rats, all newly formed bone was similarly calcified. In the postpubertal rats, only the rhBMP-2+25 ng FGF-2 group showed this higher degree of calcification. At 2 weeks, alkaline phosphatase (ALP) activity in the rhBMP-2+25 ng FGF-2 group was significantly (p<0.05) larger than that in the rhBMP-2 group in both prepubertal and postpubertal rats. This result shows that low-dose administration of FGF-2 enhanced the degree of calcification and ALP activity in the rhBMP-2 grafting site especially in the postpubertal rats. Therefore, FGF-2 would be a candidate to compensate for the reduction of osteoinductive activity of rhBMP-2 with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

REFERENCES

  1. Akita, S., M. Fukui, H. Nakagawa, T. Fujii, and K. Akino. Cranil bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen. 12:252–259, 2004.

    Article  PubMed  Google Scholar 

  2. Almer, M. H. Age factor in human alveolar bone repair. J. Oral Implantol. 19:138–142, 1993.

    Google Scholar 

  3. Becerra, J., J. A. Andrades, D. C. Ertl, N. Sorgente, and M. E. Nimni. Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: Effect of age of cell donor. J. Bone Miner. Res. 11:1703–1714, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Bessho, K., and T. Iizuka. Changes in bone inducing activity of bone morphogenetic protein with aging. Ann. Chir. Gynaecol. 207:S49–S53, 1993.

    Google Scholar 

  5. Biovin, G., and C. A. Baud. Microradiographic methods for calcified tissues. In: Methods of Calcified Tissue Preparation, edited by G. R. Dickson. Amsterdam: Elsevier Science, 1984, pp. 391–412.

    Google Scholar 

  6. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Connolly, D. T., B. L. Stoddard, N. K. Harakas, and J. Feder. Human fibroblast-derived growth factor is a mitogen and chemoattractant for endothelial cells. Biochem. Biophys. Res. Commun. 144:705–712, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Fleet, J. C., K. Cashman, K. Cox, and V. Rosen. The effects of aging on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 137:4605–4610, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Fujimura, K., K. Bessho, Y. Okubo, K. Kusumoto, N. Segami, and T. Iizuka. The effect of fibroblast growth factor-2 on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rat muscle. Arch. Oral Biol. 47:577–584, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Globus, R. K., P. Patterson-Buckendahl, and D. Gospodarowicz. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor β. Endocrinology 123:98–105, 1988.

    PubMed  CAS  Google Scholar 

  11. Gospodarowicz, D., N. Ferrara, L. Schweigerer, and G. Neufeld. Structural characterization and biological functions of fibroblast growth factor. Endocrinol. Rev. 8:95–114, 1987.

    Article  CAS  Google Scholar 

  12. Higuchi, T., A. Kinoshita, K. Takahashi, S. Oda, and I. Ishikawa. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontol. 70:1026–1031, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Jergesen, H. E., J. Chua, R. T. Kao, and L. B. Kalsau. Age effects on bone induction by demineralized bone powder. Clin. Orthop. Relat. Res. 268:253–259, 1991.

    PubMed  Google Scholar 

  14. Katagiri, T., A. Yamaguchi, T. Ikeda, S. Yoshiki, J. M. Wozney, V. Rosen, E. A. Wang, H. Tanaka, S. Omura, and T. Suda. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphgenetic protein-2. Biochem. Biophys. Res. Commum. 15(172):295–299, 1990.

    Article  Google Scholar 

  15. Kato, Y., and M. Iwamoto. Fibroblast growth factor is inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 265:5903–5909, 1990.

    PubMed  CAS  Google Scholar 

  16. Kenley, R., L. Marden, T. Turek, L. Jin, E. Roz, and J. O. Holloinger. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). J. Biomed. Mater. Res. 28:1139–1147, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Kimoto, T., R. Hosokawa, T. Kubo, M. Maeda, A. Sano, and Y. Akagawa. Continuous administration of basic fibroblast growth factor (FGF-2) accelerates bone induction on rat calvaria—an application of a new drug delivery system. J. Dent. Res. 77:1965–1969, 1998.

    PubMed  CAS  Google Scholar 

  18. Marden, L. J., J. O. Hollinger, A. Chaudhari, T. Turek, R. G. Schaub, and E. Ron. Recombinant human bone morphogenetic protein-2 is superior to demineralized bone matrix in repairing craniotomy defects in rats. J. Biomed. Mater. Res. 28:1127–1138, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Mayer, M., J. Hollinger, E. Ron, and J. Wozney. Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and polymer carrier. Plast. Reconstr. Surg. 98:247–259, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Moerman, E. J., K. Teng, D. A. Lipschitz, and B. Lecka-Czernik. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Murakami, S., S. Takayama, M. Kitamura, Y. Shimabukuro, K. Tanagi, K. Ikezawa, T. Saho, T. Nozaki, and H. Okada. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J. Periodontal. Res. 38:97–103, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Nagai, N., C. L. Qin, H. Nagatsuka, M. Inoue, and Y. Ishiwari. Age effects on ectopic bone formation induced by purified bone morphogenetic protein. Int. J. Oral Maxillofac. Surg. 28:143–150, 1998.

    Article  Google Scholar 

  23. Nemzek, J. A., S. P. Arnoczky, and C. L. Swenson. Retroviral transmission by the transplantation of connective-tissue allografts. An experimental study. J. Bone Joint Surg. Am. 76:1036–1041, 1994.

    PubMed  CAS  Google Scholar 

  24. Ohno, S., T. Doi, K. Fujimoto, C. Ijuin, N. Tanaka, K. Tanimoto, K. Honda, M. Nakahara, Y. Kato, and K. Tanne. RGD-CAP (betaig-h3) exerts a negative regulatory function on mineralization in the human periodontal ligament. J. Dent. Res. 81:822–825, 2002.

    PubMed  CAS  Google Scholar 

  25. Presta, M., P. Dell'Era, S. Mitola, E. Moroni, R. Ronca, and M. Rusnati. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16:159–178, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. Reddi, A. H. Cell biology and biochemistry of endochondral bone development. Coll. Res. 81:822–825, 1981.

    Google Scholar 

  27. Rice, D. P., T. Aberg, Y. Chan, Z. Tang, P. J. Kettunen, L. Pakarinen, R. E. Maxson, and I. Thesloff. Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855, 2000.

    PubMed  CAS  Google Scholar 

  28. Shih, M. S., M. A. Cook, C. A. Spence, S. Palnitkar, H. McElroy, and A. M. Parfitt. Relationship between bone formation rate and osteoblast surface on different subdivisions of the endosteal envelope in aging & osteoporosis. Bone 14:519–521, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Sontag, W. Age-dependent morphometric alterations in the distal femora of male and female rats. Bone 13:297–310, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Tan, H., A. Ransick, H. Wu, S. Dobias, Y. H. Liu, and R. Maxson. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos. Dev. Biol. 201:230–246, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Toriumi, D. M., H. S. Kotler, D. P. Luxeberg, M. E. Holtrop, and E. A. Wang. Mandibular reconstruction with a recombinant bone inducing factor. Functional, histologic, and biomechanical evaluation. Arch. Otolaryngol. Head Neck Surg. 117:1101–1112, 1991.

    PubMed  CAS  Google Scholar 

  32. Urist, M. R. Bone formation by autoinduction. Science 150:893–899, 1965.

    Article  PubMed  CAS  Google Scholar 

  33. Wada, K., A. Niimi, K. Watanabe, T. Sawai, and M. Ueda. Maxillary sinus floor augmentation in rabbits: A comparative histologic–histomorphometric study between rhBMP-2 and autogenous bone. Int. J. Periodont. Restorative Dent. 21:253–263, 2001.

    Google Scholar 

  34. Wang, E. A., V. Rosen, J. S. D'Alessandro, M. Bauduy, P. Cordes, T. Harada, D. I. Israel, R. M. Hewick, K. M. Kerns, P. Lapan, D. P. Luxenberg, D. Mcquaid, I. K. Moutsatsos, J. Nove, and J. M. Wozney. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. U.S.A. 87:2220–2224, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, J.-S., and P. Aspenberg. Basic fibroblast growth factor and bone induction in rats. Acta Orthop. Scand. 64:557–561, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Wozney, J. M. The potential role of bone morphogenetic proteins in periodontal reconstruction. J. Periodontol. 66:506–510, 1995.

    PubMed  CAS  Google Scholar 

  37. Yamada, K., Y. Tabata, K. Yamamoto, S. Miyamoto, I. Nagata, H. Kikuchi, and Y. Ikada. Potential efficacy of basic fibroblast growth factor incorporated in biodegradable hydrogels for skull bone regeneration. J. Neurosurg. 86:871–875, 1997.

    PubMed  CAS  Google Scholar 

  38. Yamaguchi, A. Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-beta superfamily. Semin. Cell Biol. 6:165–173, 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Yamaji, K., A. Matsumoto, and H. Kato. Aging effect on bone formation induced by recombinant human BMP-2 combined with polylactat-polyactate-copolymaer/gelatine sponge complexes at palatal subperiosteal sites in rats. J. Jpn. Soc. Periodontol. 41:380–391, 1999.

    CAS  Google Scholar 

  40. Yokota, S., T. Uchida, S. Kokubo, K. Aoyama, S. Fukushima, K. Nozaki, T. Takahashi, R. Fujimoto, R. Sonohara, M. Yoshida, S. Higuchi, S. Yokohama, and T. Sonobe. Release of recombinant human bone morphogenetic protein 2 from a newly developed carrier. Int. J. Pharm. 30:57–66, 2003.

    Article  Google Scholar 

  41. Yokota, S., S. Sonohara, M. Yoshida, M. Murai, S. Shimokawa, R. Fujimoto, S. Fukushima, S. Kokubo, K. Nozaki, K. Takahashi, T. Uchida, S. Yokohama, and T. Sonobe. A new recombinant human bone morphogenetic protein-2 carrier for bone regeneration. Int. J. Pharm. 223:69–79, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Zellin, G., and A. Linde. Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo. Bone 26:161–168, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, E., Ishino, Y., Sasaki, A. et al. Fibroblast Growth Factor-2 Augments Recombinant Human Bone Morphogenetic Protein-2-Induced Osteoinductive Activity. Ann Biomed Eng 34, 717–725 (2006). https://doi.org/10.1007/s10439-006-9092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9092-x

Keywords

Navigation