Skip to main content
Log in

The Estimation of Lung Mechanics Parameters in the Presence of Pathology: A Theoretical Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Mechanical lung function is frequently assessed in terms of lung resistance (R L), lung elastance (E L), and airway resistance (R aw). These quantities are determined by measuring input impedance at various oscillation frequencies, and allow lung tissue resistance (R t) to be estimated as the difference between R L and R aw. These various parameters change in characteristic ways in the presence of lung pathology. In particular, the ratio R t/E L (known as hysteresivity, (η) has been shown both experimentally and in numerical simulations to increase when regional heterogeneities in mechanical function develop throughout the lung. In this study, we performed an analytical investigation of a two-compartment lung model and showed that while heterogeneity always leads to an increase in E L, η will increase only initially. When heterogeneity becomes extreme, η stops increasing and starts to decrease. However, there are no experimental reports of η decreasing under conditions in which heterogeneity would be expected to exist. We speculate that this is because liquid bridges invariably form across airway lumen that narrow to a certain point, thereby preventing them from achieving arbitrarily small non-zero radii. We also show that recruitment of closed lung units during lung inflation may lead to variables responses in both η and E L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.

Similar content being viewed by others

REFERENCES

  1. Allen, G., and J. H. Bates. Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J. Appl. Physiol. 96:293–300, 2004.

    Article  PubMed  Google Scholar 

  2. Allen, G., L. K. Lundblad, P. Parsons, and J. H. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.

    PubMed  Google Scholar 

  3. Allen, G. B., L. A. Pavone, J. D. Dirocco, J. H. Bates, and G. F. Nieman. Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol., 2005.

  4. Arold, S. P, R. Mora, K. R. Lutchen, E. P. Ingenito, and B. Suki. Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am. J. Respir. Crit. Care Med. 165:366–371, 2002.

    PubMed  Google Scholar 

  5. Bates, J. H, K. A. Brown, and T. Kochi. Respiratory mechanics in the normal dog determined by expiratory flow interruption. J. Appl. Physiol. 67:2276–2285, 1989.

    PubMed  CAS  Google Scholar 

  6. Bates, J. H, and A. M. Lauzon. A nonstatistical approach to estimating confidence intervals about model parameters: Application to respiratory mechanics. IEEE Trans. Biomed. Eng. 39:94–100, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Bates, J. H., and R. Peslin. Acute pulmonary response to intravenous histamine at fixed lung volume in dogs. J. Appl. Physiol. 75:405–411, 1993.

    PubMed  CAS  Google Scholar 

  8. Fredberg, J. J., and D. Stamenovic. On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67:2408–2419, 1989.

    PubMed  CAS  Google Scholar 

  9. Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: A morphometric model. Ann. Biomed. Eng. 27:14–22, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Gomes, R. F., X. Shen, R. Ramchandani, R. S. Tepper, and J. H. Bates. Comparative respiratory system mechanics in rodents. J. Appl. Physiol. 89:908–916, 2000.

    PubMed  CAS  Google Scholar 

  11. Halter, J. M., J. M. Steinberg, H. J. Schiller, M. DaSilva, L. A. Gatto, S. Landas, and G. F. Nieman. Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am. J. Respir. Crit. Care Med. 167:1620–1626, 2003.

    Article  PubMed  Google Scholar 

  12. Hantos, Z., A. Adamicza, E. Govaerts, and B. Daroczy. Mechanical impedances of lungs and chest wall in the cat. J. Appl. Physiol. 73:427–433, 1992.

    PubMed  CAS  Google Scholar 

  13. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Hirai, T., and J. H. Bates. Effects of deep inspiration on bronchoconstriction in the rat. Respir. Physiol. 127:201–215, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Hirai, T., K. A. McKeown, R. F. Gomes, and J. H. Bates. Effects of lung volume on lung and chest wall mechanics in rats. J. Appl. Physiol. 86:16–21, 1999.

    PubMed  CAS  Google Scholar 

  16. Hohlfeld, J. M., K. Ahlf, G. Enhorning, K. Balke, V. J. Erpenbeck, J. Petschallies, H. G. Hoymann, H. Fabel, and N. Krug. Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am. J. Respir. Crit. Care Med. 159:1803–1809, 1999.

    PubMed  CAS  Google Scholar 

  17. Ito, S., E. P. Ingenito, S. P. Arold, H. Parameswaran, N. T. Tgavalekos, K. R. Lutchen, and B. Suki. Tissue heterogeneity in the mouse lung: Effects of elastase treatment. J. Appl. Physiol. 97:204–212, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Kaczka, D. W., E. P. Ingenito, B. Suki, and K. R. Lutchen. Partitioning airway and lung tissue resistances in humans: Effects of bronchoconstriction. J. Appl. Physiol. 82:1531–1541, 1997.

    PubMed  CAS  Google Scholar 

  19. Lindsley, W. G., S. H. Collicott, G. N. Franz, B. Stolarik, W. McKinney, and D. G. Frazer. Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways. Ann. Biomed. Eng. 33:365–375, 2005.

    Article  PubMed  Google Scholar 

  20. Lutchen, K. R., J. L. Greenstein, and B. Suki. How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J. Appl. Physiol. 80:1696–1707, 1996.

    PubMed  CAS  Google Scholar 

  21. Mishima, M., Z. Balassy, and J. H. Bates. Acute pulmonary response to intravenous histamine using forced oscillations through alveolar capsules in dogs. J. Appl. Physiol. 77:2140–2148, 1994.

    PubMed  CAS  Google Scholar 

  22. Neumann, P., J. E. Berglund, E. F. Mondejar, A. Magnusson, and G. Hedenstierna. Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic-acid-induced lung injury. Am. J. Respir. Crit. Care Med. 158:1636–1643, 1998.

    PubMed  CAS  Google Scholar 

  23. Similowski, T., and J. H. Bates. Two-compartment modelling of respiratory system mechanics at low frequencies: Gas redistribution or tissue rheology? Eur. Respir. J. 4:353–358, 1991.

    PubMed  CAS  Google Scholar 

  24. Suki, B., A. M. Alencar, J. Tolnai, T. Asztalos, F. Petak, M. K. Sujeer, K. Patel, J. Patel, H. E. Stanley, and Z. Hantos. Size distribution of recruited alveolar volumes in airway reopening. J. Appl. Physiol. 89:2030–2040, 2000.

    PubMed  CAS  Google Scholar 

  25. Suki, B., H. Yuan, Q. Zhang, and K. R. Lutchen. Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J. Appl. Physiol. 82:1349–1359, 1997.

    PubMed  CAS  Google Scholar 

  26. Takubo, Y., A. Guerassimov, H. Ghezzo, A. Triantafillopoulos, J. H. Bates, J. R. Hoidal, and M. G. Cosio. Alpha1-antitrypsin determines the pattern of emphysema and function in tobacco smoke-exposed mice: Parallels with human disease. Am. J. Respir. Crit. Care Med. 166:1596–1603, 2002.

    Article  PubMed  Google Scholar 

  27. Thorpe, C. W, and J. H. Bates. Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J. Appl. Physiol. 82:1616–1625, 1997.

    PubMed  CAS  Google Scholar 

  28. Tomioka, S., J. H. Bates, and C. G. Irvin. Airway and tissue mechanics in a murine model of asthma: alveolar capsule vs. forced oscillations. J. Appl. Physiol. 93:263–270, 2002.

    PubMed  Google Scholar 

  29. Wagers, S., L. K. Lundblad, M. Ekman, C. G. Irvin, and J. H. Bates. The allergic mouse model of asthma: Normal smooth muscle in an abnormal lung? J. Appl. Physiol. 96:2019–2027, 2004.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NIH grants nos. R01 HL67273 and NCRR-COBRE P20 RR15557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. T. Bates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, J.H.T., Allen, G.B. The Estimation of Lung Mechanics Parameters in the Presence of Pathology: A Theoretical Analysis. Ann Biomed Eng 34, 384–392 (2006). https://doi.org/10.1007/s10439-005-9056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9056-6

Keywords

Navigation