Skip to main content
Log in

Stress Relaxation in Porcine Septal Cartilage During Electromechanical Reshaping: Mechanical and Electrical Responses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Electromechanical reshaping (EMR) of facial cartilage has recently been developed as an alternative to classic surgical techniques to alter cartilage shape. This study focuses on determining the underlying physical mechanisms responsible for shape change (stress relaxation) in mechanically deformed facial cartilage specimens exposed to constant electric fields. Flat porcine nasal septal cartilage specimens were deformed by an aluminum jig into semicylindrical shapes while a constant electric voltage was applied to the concave and convex surfaces of the specimen. Mechanical stress, electric current and resistance were measured during voltage application. Specimen shape retention was measured as retained bend angle. Total electric charge transferred in the electric circuit was calculated from the electric current measurement. Electrical resistance, transferred charge and the bend angle increase with increase in voltage application time until bend angle reaches maximum value determined by the jig geometry. Then, the bend angle decreases and electrical parameters nearly saturate. The time dependent behavior of electric current was analyzed using the Cottrell equation. The observed changes in electric current suggest that during the initial 1–2 min of EMR nonlinear diffusion determines electro-chemical reaction rates, which are then followed by a linear diffusion dominated process. Close correlation between alteration of cartilage mechanical state and change in its electrical properties suggest that an electro-chemical reaction is the dominant mechanism behind EMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.

Similar content being viewed by others

REFERENCES

  1. Albery, J., Electrode Kinetics, Oxford: Claredon Press, 1–89 1975.

    Google Scholar 

  2. Bagratashvili, V. N., E. N. Sobol, A. P. Sviridov, V. K. Popov, A. I. Omel’chenko, and S. M. Howdle. Thermal and diffusion processes in laser-induced stress relaxation and reshaping of cartilage. J. Biomech. 30:813–817, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Brent B., Technical advances in ear reconstruction with autogenous rib cartilage grafts: Personal experience with 1200 cases. Plast. Reconstr. Surg. 104:319–334, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Buschmann, M. D., and A. J. Grodzinsky. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117:179–192, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Darren, S. G., J. A. Kimball, and B. J. Wong. Shape retention in porcine-septal cartilage following Nd:YAG (λ = 1.36) laser-mediated reshaping. Lasers. Surg. Med. 29:160–164, 2001.

    Article  Google Scholar 

  6. Diaz, S. H., G. Aguilar, R. Basu, E. J. Lavernia, and B. J. Wong. Modeling the thermal response of porcine cartilage to laser irradiation. Proc. SPIE. 4617:47–56, 2002.

    Article  Google Scholar 

  7. Díaz, S. H., G. Aguilar, E. J. Lavernia, and B. J. Wong. Modeling the thermal response of porcine cartilage to laser irradiation. IEEE J. Sel. Top. Quantum Electron. 7:944–951, 2001.

    Article  Google Scholar 

  8. Eisenberg, S. R., and A. J. Grodzinsky. The kinetics of chemically induced nonequilibrium swelling of articular cartilage and corneal stroma. J. Biomech. Eng. 109:79–89, 1987.

    PubMed  CAS  Google Scholar 

  9. Frank, E. H., and A. J. Grodzinsky, Cartilage electromechanics – I. Electrokinetic transduction and the effect of electrolyte pH and ionic strength. J. Biomech. 20:615–627, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Fry H. Interlocked stresses in human nasal septal cartilage. Br. J. Plast. Surg. 19:276–278, 1966.

    Article  PubMed  CAS  Google Scholar 

  11. Geiger, W. H., and M. D. Hawely. Choosing and Performing an electrochemical experiment. In: Physical Methods of Chemistry, edited by B. W. Rossiter and J. F. Hamilton. New York: John Wiley and Sons, 1986, pp. 1–54.

    Google Scholar 

  12. Gray, D. S., J. A. Kimball, and B. J. Wong. Shape retention in porcine septal cartilage following Nd:YAG laser mediated reshaping. Lasers Surg. Med. 29:160–164, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. Gu, W. Y., W. M. Lai, and V. C. Mow. Transport of fluid and ions trough a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 26:709–723, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Helidonis, E., E. Sobol, G. Kavvalos, J. Bizakis, P. Christodoulou, G. Velegrakis, J. Segas, and V. Bagratashvili. Laser shaping of composite cartilage grafts. Am. J. Otolaryngol. 14:410–412, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Ho, K. K., S. H. Diaz-Valdes, D. E. Protsenko, G. Aguilar, and B. J. Wong. Electromechanical reshaping of septal cartilage. Laryngoscope. 113:1916–1921, 2003.

    Article  PubMed  Google Scholar 

  16. Johns, M. E., D. E. Mattox, and J. C. Price. Atlas of Head and Neck Surgery. Philadelphia: B. C. Decker Inc., 1990.

    Google Scholar 

  17. Keefe, M., A. Rasouli, S. Telenkov, A. M. Karamzadeh, T. E. Milner, R. L. Crumley, and B. J. Wong. Radiofrequency cartilage reshaping: efficacy, biophysical measurements, and tissue viability. Arch. Facial. Plast. Surg. 5:46–52, 2003.

    Article  PubMed  Google Scholar 

  18. Lee, R. C., E. H. Frank, A. J. Grodzinsky, and D. K. Roylance. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties. J. Biomech. Eng. 103: 280–292, 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Lovice, D. B., M. D. Mingrone, and D. M. Toriumi. Grafts and implants in rhinoplasty and nasal reconstruction. Otolaryngol. Clin. North. Am. 32:113–141, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Myers, T. G., G. K. Aldis, and S. Naili. Ion induced deformation of soft tissue. Bull. Math. Biol. 57:77–98, 1995.

    PubMed  CAS  Google Scholar 

  21. Ovchinnikov, Y., E. Sobol, V. Svistushkin, A. Shekhter, V. Bagratashvili, and A. Sviridov. Laser septochondrocorrection. Arch. Facial. Plast. Surg. 4:180–185, 2002.

    Article  PubMed  Google Scholar 

  22. Protsenko, D. E., K. H. Ho, and B. J. Wong. Monitoring of electrical properties during cartilage reshaping. Proc. SPIE. 4949: 307–310, 2003.

    Google Scholar 

  23. Setton, L. A., H. Tohyama, and V. C. Mow. Swelling and curling behaviors of articular cartilage. J. Biomech. Eng. 120: 355–361, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Spilker, R. L., J. K. Suh, and V. C. Mow. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage. J. Biomech. Eng. 114:191–201, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Sun, D. D., W. E. Gu., Likhitpanichkul, W. M. Lai, and V. C. Mow. The Influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. J. Biomed. Eng. 126: 6–16, 2004.

    CAS  Google Scholar 

  26. Vassos, B.H., and G.W. Ewing. Electroanalytical Chemistry. New York: John Wiley and Sons, 1983, pp. 1–36.

    Google Scholar 

  27. Wang, Z., D. F. Perrault, M. M. Pankratov, and S. M. Shapshay. Endoscopic laser-assisted reshaping of collapsed tracheal cartilage: A laboratory study. Ann. Otol. Rhinol. Laryngol. 105: 176–181, 1996.

    PubMed  CAS  Google Scholar 

  28. Wright, R., D. E. Protsenko, S. Diaz, K. Ho, and B. J. Wong. Shape retention in porcine and rabbit nasal septal cartilage using saline bath immersion and Nd:YAG laser irradiation. Lasers Surg. Med. 37: 201–209, 2005.

    Google Scholar 

  29. Wright, R., K. H. Ho, D. E. Protsenko, S. Diaz, and B. J. Wong. Effect of bath water temperature and immersion time on bend angle during cartilage thermoforming. Proc. SPIE. 4949: 293–299, 2003.

    Article  Google Scholar 

  30. Wong, B. J., K. Chao, and H. K. Kim. The porcine and lagomorph septal cartilages: models for tissue engineering and morphologic cartilage research. Am. J. Rhinol. 15:109–116, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Zumdahl, S. S., Chemistry. Lexington: Heath and Co, 1989, p. 841.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Air Force Office of Scientific Research (FA9550–04–1–0101) and the National Institutes of Health (DC005572, DC 00170, RR 01192). The authors express their gratitude to Dr. Patrick Farmer for his helpful discussions and to Chao Li and Ryan Wright for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy E. Protsenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protsenko, D.E., Ho, K. & Wong, B.J.F. Stress Relaxation in Porcine Septal Cartilage During Electromechanical Reshaping: Mechanical and Electrical Responses. Ann Biomed Eng 34, 455–464 (2006). https://doi.org/10.1007/s10439-005-9051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9051-y

Keywords

Navigation