Skip to main content
Log in

Experimental and Numerical Smoke Carcinogen Deposition in a Multi-Generation Human Replica Tracheobronchial Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A better understanding of submicron particle deposition in the respiratory tract is needed to study the health effects caused by carcinogenic particles. Recent studies indicate that random diffusion is not sufficient to describe the motion of these particles in complex geometries, rendering conventional models inaccurate. A solid replica of excised human lung segments was used to create digital and hollow models of the tracheobronchial region to investigate deposition of mainstream (MS) and sidestream (SS) cigarette smoke particles. Particle sizes for the carcinogen Benzo(a)pyrene (BaP) in SS smoke, and total particulate matter (UVPM) in SS and MS smoke were measured and used to compare the simulation to experimental data. Excellent agreement was found between predicted and measured results. Random diffusion was not found to be significant for submicron particles indicating that particles were instead transported to the airway wall by convective diffusion. BaP in SS smoke was an average 0.3 μm compared to 0.36 μm for UVPM in SS smoke. The trends in both experimental and numerical results indicated that the BaP in SS smoke deposits at a slightly higher efficiency than the UVPM, indicating that carcinogen-specific deposition, rather than total particulate matter should be considered when investigating health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

References

  1. Asgharian, B., W. Hofmann, and R. Bergmann. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34(4):332–339, 2001.

    Article  CAS  Google Scholar 

  2. Auerback, O., A. P. Stout, E. C. Hammond, and L. Garfinkel. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N. Engl. J. Med. 265:253, 1961.

    Google Scholar 

  3. Balásházy, I., W. Hofmann, and T. Heistracher. Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J. Aerosol Sci. 20(2):185–203, 1999.

    Article  Google Scholar 

  4. Bell, K. A. Deposition in respiratory airway models. In: Recent Developments in Aerosol Science, edited by D. T. Shaw. New York: Wiley, 1978.

    Google Scholar 

  5. Broday, D. M., and R. Robinson. Application of cloud dynamics to dosimetry of cigarette smoke particles in the lungs. Aerosol Sci. Technol. 37(6):510–527, 2003.

    Article  CAS  Google Scholar 

  6. Chen, B. T., J. Gnemon, H. Yeh, J. Mauderly, and R. Cuddihy. Physical characterization of cigarette smoke aerosol generated from a Walton smoke machine. Aerosol Sci. Technol. 12:364–375, 1990.

    Article  CAS  Google Scholar 

  7. Clinkenbeard, R. E., D. L. Johnson, R. Parthasarathy, and M. C. Altan. Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique. AIHA J. 63(2):141–150, 2002.

    Article  Google Scholar 

  8. Cohen, B., G. Sussman, and M. Lippmann. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12:1082–1091, 1990.

    Article  Google Scholar 

  9. Cohen, B. S., and B. Asgharian. Deposition of ultrafine particles in the upper airways: An empirical analysis. J. Aerosol Sci. 21:789–797, 1990.

    Article  Google Scholar 

  10. Comer, J. K., C. Kleinsteuer, S. Huyn, and C. Kim. Aerosol transport and deposition in sequentially bifurcating airways. ASME J. Biomech. Eng. 1122:152–158, 2000.

    Article  Google Scholar 

  11. Denissenko, M. F., A. Pao, M. Tang, and G. Pfeifer. Preferential formation of benzopyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Ermala, P., and L. Holsti. Distribution and absorption of tobacco tar in the organs of the respiratory tract. Cancer 8:673–678, 1955.

    Article  PubMed  CAS  Google Scholar 

  13. Federal Trade Commission. Tar, Nicotine, and Carbon Monoxide of the Smoke of 1206 Varieties of Domestic Cigarettes. Washington, DC: Federal Trade Commission, 1997.

  14. Greenblatt, M. S., W. Bennett, M. Hollstein, and C. Harris. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878, 1994.

    PubMed  CAS  Google Scholar 

  15. Gupta, D., and M. Peters. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. Colloid Interf. Sci. 104(2):375–389, 1985.

    Article  CAS  Google Scholar 

  16. Heistracher, T., and W. Hofmann. Physiologically realistic models of bronchial airway bifurcations. J. Aerosol Sci. 26(1):497–509, 1995.

    Article  CAS  Google Scholar 

  17. Herman, D. L., and M. Crittenden. Distribution of primary lung carcinomas in relation to time as determined by histochemical techniques. J. Natl. Cancer Inst. 27:1227–1271, 1961.

    PubMed  CAS  Google Scholar 

  18. Hofmann, W., R. Golser, and I. Balashazy. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci. Technol. 37:988–994, 2003.

    Article  CAS  Google Scholar 

  19. ICRP (Task Group of committee 2). Human Respiratory Tract Model for Radiological Protection, Publication 66. New York: Pergamon Press, 1994.

  20. Jan, D., A. Shapire, and R. Kahm. Some features of oscillatory flow in a model bifurcation. Am. Phys. Soc. 147–159, 1989.

  21. Lee, J. W., J. Goo, and M. Chung. Characteristics of inertial deposition in a double bifurcation. J. Aerosol Sci. 27(1):119–138, 1996.

    Article  CAS  Google Scholar 

  22. Lee, W. C., and C. S. Wang. Particle Deposition in Systems of Repeatedly Bifurcation Tubes. Inhaled Particle IV. New York: Pergmon Press, 1977, pp. 49–60.

    Google Scholar 

  23. Li, A., and G. Ahmadi. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16:209–226, 1992.

    Article  CAS  Google Scholar 

  24. Martonen, T. B. Deposition patterns of cigarette smoke in human airways. Am. Ind. Hyg. Assoc. J. 53:6–18, 1992.

    PubMed  CAS  Google Scholar 

  25. Martonen, T. B., W. Hoffmann, and J. Lowe. Cigarette smoke and lung cancer. Health Phys. 52(2):213–217, 1987.

    PubMed  CAS  Google Scholar 

  26. NCRP (National Council on Radiological Protection and Measurements). Report 125—Deposition, Retention and Dosimetry of Inhaled Radioactive Substances. Bethesda, MD, 1997.

  27. Nowak, N., P. Kakade, and A. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390, 2003.

    Article  PubMed  Google Scholar 

  28. Oldham, M. J., R. Phalen, and T. Heistracher. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci. Technol. 36:61–71, 2000.

    Article  Google Scholar 

  29. Phalen, R. F., and M. Oldham. Tracheobronchial airway structure as revealed by casting techniques. Am. Rev. Respir. Dis. 128:s1–s4, 1983.

    PubMed  CAS  Google Scholar 

  30. Phalen, R .F., H. Yeh, O. Raabe, and D. Velasquez. Casting the lungs in situ. Anat. Rec. 1990:167–176, 1973.

    Google Scholar 

  31. Pedley, T. J. Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9:229–274, 1977.

    Article  CAS  Google Scholar 

  32. Robinson, R. J., and C. P. Yu. Deposition of cigarette smoke particles in the human respiratory tract. J. Aerosol Sci. Technol. 34:202–215., 2001.

    Article  CAS  Google Scholar 

  33. Schlesinger, R. B., and M. Lippmann. Selective particle deposition and bronchogenic carcinoma. Environ. Res. 5:424–431, 1978.

    Article  Google Scholar 

  34. Shaw, D. T., N. Rajendran, and N. Liao. Theoretical modeling of fine-particle deposition in 3-dimensional bronchial bifurcations. Am. Ind. Hyg. Assoc. J. 39:195–201, 1978.

    PubMed  CAS  Google Scholar 

  35. Shi, H., C. Kleinstreuer, and Z. Zhang. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys. Fluids 16:2199–2213, 2004.

    Article  CAS  Google Scholar 

  36. Smith, S., Y. Cheng, and H. Yeh. Deposition of ultra fine particles in human tracheobronchial airways of adults and children. Aerosol Sci. Technol. 35:697–709, 2001.

    Article  CAS  Google Scholar 

  37. Weibel, E. R. Morphometry of the Human Lung. Berlin: Springer, 1963.

  38. Wingen, L. M., J. Low, and B. Finlayson-Pitts. Chromatography, absorption, and fluorescence: A new instrumental analysis experiment on the measurement of polycyclic aromatic hydrocarbons in cigarette smoke. J. Chem. Educ. 75:1599–1603, 1998.

    Article  CAS  Google Scholar 

  39. Yang, C. P., R. Gallagher, N. Weiss, P. Band, D. Thomas, and D. Russel. Differences in incidence rates of cancers of the respiratory tract by anatomic subsite and histologic type: An etiologic implication. J. Natl. Cancer Inst. 81(21):1828–1831, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, C. P. Exact analysis of aerosol deposition during steady breathing. Powder Technol. 21:55–62, 1978.

    Article  Google Scholar 

  41. Yu, G., Z. Zhang., and R. Lessmann. Computer simulation of the flow field and particle deposition by diffusion in 3-D human airway bifurcation. Aerosol Sci. Technol. 25:338–352, 1996.

    Article  CAS  Google Scholar 

  42. Zhang, Z., and C. Kleinstreuer. Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Physics. 198:178–210, 2004.

    Article  Google Scholar 

  43. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Effects of curved inlet tubes on airflow and particle deposition in bifurcating lung models. J. Biomech. 34(5):659–669, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported, in part, by the University of California Tobacco-Related Disease Research Program Grant #10RT-003 and the American Cancer Society Grant #RSG-05-021-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risa J. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, R.J., Oldham, M.J., Clinkenbeard, R.E. et al. Experimental and Numerical Smoke Carcinogen Deposition in a Multi-Generation Human Replica Tracheobronchial Model. Ann Biomed Eng 34, 373–383 (2006). https://doi.org/10.1007/s10439-005-9049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9049-5

Keywords

Navigation