Skip to main content
Log in

Numerical Solution of Ocular Fluid Dynamics in a Rabbit Eye: Parametric Effects

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Numerical calculations of the aqueous humor dynamics in the anterior chamber of a rabbit's eye are presented to delineate the basic flow mechanisms. The calculations are based on a geometrical model of the eye, which represents the Trabecular meshwork (TM) as a multilayered porous zone of specified pore sizes and void fraction. The outer surface of the cornea is assumed to be at a fixed temperature (corresponding to the ambient temperature), while the iris surface is assumed to be at the core body temperature. Results are obtained for both the horizontal upward-facing orientation of the eye, and the vertical orientation of the eye. Parameters varied include: the temperature difference between the iris and the cornea to underscore the important role of buoyancy in driving the aqueous humor flow; and, the pupil size reflecting different levels of ambient light. Buoyancy is observed to be the dominant driving mechanism for the convective motion in both orientations of the eye. Variations in the pupil size appear to have little influence on the IOP or flow distribution in view of the dominant role of buoyancy in controlling the flow motion. The study provides distributions of the shear stress and flow patterns and delineates the important role of the eye-orientation on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.

Similar content being viewed by others

REFERENCES

  1. Canning, C. R., J. N. Dewynne, A. D. Fitt, and M. J. Greaney. Fluid flow in the anterior chamber of a human eye. IMA J. Math. Appl. Med. Biol. 19:31–60, 2002.

    Google Scholar 

  2. Doormal, J. P., and G. D. Raithby. Enhancements of the SIMPLE method for predicting incompressible fluid flow. Numer. Heat Transf. 7:147–163, 1984.

    Article  Google Scholar 

  3. Epstein, D. L., T. F. Freddo, P. J. Anderson, M. M. Patterson, and S. B. Chu. Experimental obstruction to aqueous outflow by pigment particles in living monkeys. Invest. Opthalmol. Vis. Sci. 27:387–395, 1986.

    CAS  Google Scholar 

  4. Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 48(2):89–94, 1952.

    CAS  Google Scholar 

  5. Ethier, C. R., M. F. Coloma, A. W. Kater, and R. R. Allingham, Retroperfusion studies of the aqueous outflow system. Invest. Opthalmol. Vis. Sci. 34:(2):385–394, 1992.

    Google Scholar 

  6. Ethier, C. R., R. D. Kamm, M. Johnson, A. F. Pavoo, and P. J. Anderson, Further studies on the flow of aqueous humor through microporous filters. Invest. Opthalmol. Vis. Sci. 30:739–746, 1989.

    CAS  Google Scholar 

  7. Ethier, C. R., R. D. Kamm, B. A. Palaszewski, M. C. Johnson, and T. M. Richardson. Calculations of flow resistance in the juxtacanalicular meshwork. Invest. Opthalmol. Vis. Sci. 27:1741–1750, 1986.

    CAS  Google Scholar 

  8. Gerlach, J. C., G. Hentschel, K. Zeilinger, M. D. Smith, and P. Neuhas. Cell detachment during sinusoidal reperfusion after liver preservation, in vitro model. Transplantation 64:907–912, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Grant, W. M., Experimental aqueous perfusion in enucleated human eyes. Arch. Ophthalmol. 69(6):783–801, 1963.

    PubMed  CAS  Google Scholar 

  10. Heys, J. J., and V. H. Barocas. Computaional evaluation of the role of accommodation in pigmentary glaucoma. Invest. Opthalmol. Vis. Sci. 43:700–708, 2002.

    Google Scholar 

  11. Heys, J. J., and V. H. Barocas. A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle. Ann. Biomed. Eng. 30:392–401, 2002.

    Article  PubMed  Google Scholar 

  12. Heys, J. J., V. H. Barocas, and M. J. Taravella. Modeling passive mechanical interaction between aqueous humor and iris. J. Biomech. Eng. 123:540–546, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. Huillier, J. P., and G. A. Sbirlea, T. B. Martonen. Morphology of the human eye: Glaucoma physiology and laser iridectomy. In: Medical Applications of Computer Modelling: Cardiovascular and Ocular Systems, edited by WIT, United Kingdom, pp. 225–242, 2000.

  14. Johnson, M. C., and R. D. Kamm. The role of Schlemm's canal in aqueous outflow from the human eye. Invest. Opthalmol. Vis. Sci. 24:320–325, 1983.

    CAS  Google Scholar 

  15. Johnson, M. C., R. D. Kamm, W. M. Grant, D. L. Epstein, and D. Gasterland. The flow of aqueous humor through micro-porous filters. Invest. Opthalmol. Vis. Sci. 27:92–97, 1986.

    CAS  Google Scholar 

  16. M. Johnson, A. Shaprio, C. R. Ethier, and R. D. Kamm. Modulation of outflow resistance by the pores of the inner wall endothelium. Invest. Opthalmol. Vis. Sci. 33:1670–1675, 1992.

    CAS  Google Scholar 

  17. Kocak, I., S. Orgul, and J. Flammer. Variability in the measurement of corneal temperature using a non-contact infrared thermometer. Ophthalmologica 213(6):345–349, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Lindenmayer, J. M., M. G. Kahn, E. Hertzman, and D. L. Epstein. Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl agents. Invest. Opthalmol. Vis. Sci. 24:710, 1983.

    CAS  Google Scholar 

  19. Lehto, I., P. Ruusuvaara, and K. Setala. Corneal endothelim in pigmentary glaucoma and pigment dispersion syndrome. Ophthalmologica 68:703–709, 1990.

    Article  CAS  Google Scholar 

  20. Mallinson, G. D., and G. D. V. Davis. Three-dimensional natural convection in a box: A numerical study. J. Fluid Mech. 83(1):1–31, 1977.

    Article  Google Scholar 

  21. McEwen, W., Application of Poiseuilles's law to aqueous outflow. Arch. Ophthalmol. 60(2):290–294, 1958.

    CAS  Google Scholar 

  22. Mclaren, J. W., S. D. Trocme, S. Relf, and R. F. Brubaker. Rate of flow of aqueous humor determined from measurements of aqueous flare. Invest. Opthalmol. Vis. Sci. 31(2):339–346, 1990.

    CAS  Google Scholar 

  23. Mori, A., Y. Oguchi, Y. Okusawa, M. Ono, H. Fyhusguna, and K. Tsubota. Fujishima, and use of high-speed, high-resolution thermography to evaluate the tear film layer. Am. J. Ophthalmol. 124:729–735, 1997.

    PubMed  CAS  Google Scholar 

  24. Mullenax, C. A., “Doctoral Research Prospectus,” available at (http://www.studentweb.Tulane.edu/~cmullen/documents.html), pp. 6.

  25. Okuno, T. Thermal effect of infra-red radiation on the eye: A study based on a model. Ann. Ocuup. Hyg. 35:1–12, 1991.

    Article  CAS  Google Scholar 

  26. Palkama, A., and R. Beureman. Ocular fluid dynamics measured with vivo confocal microscopy and microbeads. Ophthalmology, 2001.

  27. Scott, J. A. The computation of temperature rises in the human eye induced by infrared radiation. Phys. Med. Biol. 33:243–257, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Scott, J. A., A finite element model of heat transport in the human eye. Phys. Med. Biol. 33:227–241, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Tripathi, R. C., and B. J. Tripathi. Anatomy of the Human Eye, Orbit, and Adnexa. In: The Eye, Vol. 1a, Vegetative Physiology and Biochemistry, edited by Hugh Davson. New York: Academic, pp. 1–268, 1984.

  30. Yedder, R. B., and E. Bilgen. Laminar natural convection in inclined enclosures bounded by a solid wall. Heat Mass Transf. 32:455–462, 1997.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a grant from the Louisiana Board of Regents under a Health Excellence Support Fund program. Their support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Acharya, S., Beuerman, R. et al. Numerical Solution of Ocular Fluid Dynamics in a Rabbit Eye: Parametric Effects. Ann Biomed Eng 34, 530–544 (2006). https://doi.org/10.1007/s10439-005-9048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9048-6

Keywords

Navigation