Skip to main content

Advertisement

Log in

A Finite Element Model for Ultrafast Laser–Lamellar Keratoplasty

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A biomechanical model of the human cornea is employed in a finite element formulation for simulating the effects of Ultrafast Laser–Lamellar Keratoplasty. Several computer simulations were conducted to study curvature changes of the central corneal zone under various physiological and surgical factors. These factors included the combined effect of corneal flap and residual stromal bed thickness on corneal curvature; the effect of the shape of the lenticle on the surgical procedure outcomes and the effect of flap thickness on stress distribution in the cornea. The results were validated by comparing computed refractive power changes with clinical results. The effect of flap thickness on the amount of central flattening indicates that for flap thickness values 28% over the corneal thickness, central corneal flattening decreases. Moreover, the change in corneal curvature induced by subtraction of a plano-convex lenticle under a uniform flap, naturally imply a smaller change in the structure of the anterior layers of the cornea, but a bigger deformation in the structure of the posterior layers that are left behind the resection of the lenticle. In addition, the model also verified that the corneal curvature increased peripherally with simultaneous thinning centrally after subtraction of corneal tissue. This result shows that not only the treated zone is affected by the surgery, indicating the important role of the biomechanical response of the corneal tissue to refractive surgery, which is unaccounted for in current ablation algorithms. The results illustrate the potentialities of finite element modeling as an aid to the surgeon in evaluating variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

PRK:

photorefractive keratectomy.

LASIK:

laser-assisted in situ keratomileusis.

FS:

femtosecond.

FLK:

femtosecond laser–lamellar keratoplasty.

ALK:

automated lamellar keratoplasty.

PLK:

picosecond laser keratomileusis.

REFERENCES

  1. Azar, D. T., and S. G. Farah. Laser in situ keratomileusis versus photorefractive keratectomy: An update on indications and safety. Ophthalmology 105(8):1357–1358, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Barraquer, J. I. Basis of refractive keratoplasty. Refract. Corneal Surg. 5:179–193, 1989.

    PubMed  CAS  Google Scholar 

  3. Bathe, K. J. Finite Element Procedures in Engineering Analysis. New York: Prentice Hall, 1996.

  4. Berjano, E. J., J. L. Aliό, and J. Saiz. Modeling for radio-frequency conductive keratoplasty: Implications for the maximum temperature reached in the cornea. Physiol. Measure 26(3):157–172, 2005.

    Article  Google Scholar 

  5. Bryant, M. R., and T. Juhasz. Mathematical model of picosecond laser keratomileusis for high myopia. J. Refract. Surg. 16:1–8, 2000.

    Google Scholar 

  6. Bryant, M. R., and S. Velinsky. Design of keratorefractive surgical procedures: Radial keratotomy. ASME J. Mech. Des. 7:113–150, 1991.

    Google Scholar 

  7. Bryant, M. R., and P. J. McDonnell. Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118:473–481, 1996.

    PubMed  CAS  Google Scholar 

  8. Cabrera Fernández, D., A.-S. Niazy, G. P. Djotyan, R. M. Kurtz, and T. Juhasz. Computational modeling of corneal refractive surgery. In: Proceedings of SPIE, Vol. 5314, edited by Fabrice Manns, Per G. Soderberg, and Arthur Ho. Ophthalmic Technologies XIV; 2004.

  9. Cabrera Fernández, D., A.-S. Niazy, G. P. Djotyan, R. M. Kurtz, and T. Juhasz. Biomechanical model of corneal transplantation. J. Refract. Surg (in press).

  10. Casebeer, J.C. Lamellar Refractive Surgery, ISBN: 1-55642-286-5. SLACK Incorporated.

  11. Chynn, E. M. Model estimates refractive surgery market for myopia. Ophthalmol. Times 15:15,1997.

    Google Scholar 

  12. Djotyan, G. P., Kurtz, R. M., Cabrera Fernández, D. and T. Juhasz. Corneal Refractive Surgery: An Analitically solvable model including biomechanical response. J. Biomech. Eng. 123(5):440–445, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. H. Goldmann, Applanation Tonometry. Glaucoma Josiah Macy Jr. Foundation, 1956, pp. 67–220.

  14. Greene, P. R. Mechanical considerations in myopia. Am. J. Optom. Physiol. Opt. 57:902–914, 1980.

    PubMed  CAS  Google Scholar 

  15. Guarnieri, F.A. Modelo biomecánico del ojo para diseño asistido por computadora de la cirugía refractiva. PhD Thesis, Universidad Nacional de Litoral, Argentina, 1999.

  16. Hanna, K.D., F. E. Jouve, and G. O. Waring. Preliminary computer simulation of the effects of radial keratotomy. Arch. Ophthalmol. 107:911–918, 1989.

    PubMed  CAS  Google Scholar 

  17. Hanna, K. D., F. E. Jouve, H. Bercovier, and G. O. Waring. Computer simulation of lamellar keratectomy and laser myopic keratomileusis. J. Refract. Surg. 4:222–231, 1988.

    Google Scholar 

  18. Hannush, S.D. What's new in refractive surgery: http://www.optistock.com/spotlight16e.html.

  19. Hwey-Lan, L., and N. A. Brennan. Anatomically accurate finite model eye for optical modelling. J. Opt. Soc. Am. 14(8):1684–1695, 1997.

    Article  Google Scholar 

  20. Johnson, T., Refractive surgery market still seeing exciting growth. Ophthalmol. Times. December 15, 2000.

  21. Juhasz, T., R. M. Kurtz, C. Horvath, C. Suarez, F. Raksi, B. Bor, and G. Spooner. The femtosecond blade: Applications in corneal surgery, Optics and Photonics News, January, 2002.

  22. Juhasz, T., G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Billie, and G. Mourou. Applications of femtosecond lasers in corneal surgery. Laser Phys. 10(2):495–500, 2000.

    Google Scholar 

  23. Juhasz, T., F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou. Corneal refractive surgery with femtosecond lasers. IEEE J. Select. Topics Quantum Electr. 5:902–910, 1999.

    Article  CAS  Google Scholar 

  24. Kurtz, R., G. Spooner, K. Sletten, S. I. Sayegh, and T. Juhasz, Femtosecond laser corneal refractive surgery. SPIE Proceedings, pp. 3610, 1999.

  25. Loesel, F. H., A.-C. Tien, and S. Backus. Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue. SPIE Proceedings, pp. 3565, 1999.

  26. Lotmar, W. Theoretical eye model with aspherics. J. Opt. Soc. Am. 61:1522–1529, 1971.

    Article  Google Scholar 

  27. MarketWatch sector reports: http://www.optistock.com/mw/2004-02all.pdf.

  28. Mow, C. C. A theoretical model of the cornea for use in studies of tonometry. Bull. Math. Biophys. 38:437–453, 1968.

    Article  Google Scholar 

  29. Newton, R. H., and K. M. Meek, The integration of the corneal and limbal fibrils in the human eye. Biophys. J. 75:2508–2512, 1998.

    PubMed  CAS  Google Scholar 

  30. Nonlinear Finite Element Structural Analysis. Training Manual COSMOS/M, Version 1.7, 1994.

  31. Pinsky, P. M., D. V. Datye. A microstructurally-based finite element model of the incised human cornea. J. Biomech. 24(10):907–922, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Rand, R.H., S. R. Lubkin, and H. C. Howland. Analyitical model of corneal surgery. J. Biomech. Eng. 113(2):239–241, 1991.

    PubMed  CAS  Google Scholar 

  33. Ratkay-Traub, I., I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger. First clinical results with the femtosecond neodymium-glass laser in refractive surgery. J. Refract. Surg. 19, 2003.

  34. Ratkay-Traub, I., T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. M. Kurtz. Ultra-short (femtosecond) laser surgery: Initial use in LASIK flap creation. Ophthalmol. Clin. North Am. 14:347–55, 2001.

    PubMed  CAS  Google Scholar 

  35. Sang, H L. MSC/Nastran, Handbook for Nonlinear Analysis, Version 67. The Macneal-Schwendler Corporation, 1992.

  36. Skovoroda, A. R., E. Y. Emelianov, and M. O'Donnell. Reconstruction of tissue elasticity based on ultrasound displacement and strain images. IEEE Trans. Ultrason. Ferroelectr. Frequenc. Control 42:747–765, 1995.

    Article  Google Scholar 

  37. Sletten, K., K. Yen, S. I. Sayegh, F. Loesel, C. Eckhoff, C. Horvath, H.-H. Liu, T. Juhasz, and R. M. Kurtz. An in vivo model of femtosecond laser intrastromal refractive surgery. J. Ophthalmic Lasers Surg. 30:742–749, 1999.

    CAS  Google Scholar 

  38. Uchio, E., S. Ohno, J. Kudoh, K. Aoki, and L. T. Kisielewicz. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br. J. Ophthalmol. 83:1106–1111, 1999.

    PubMed  CAS  Google Scholar 

  39. Vito, R. P., T. J. Shin, and B. E. McCarey A mechanical model of the cornea: The effects of physiological and surgical factors on radial keratotomy surgery. Refract.Corneal Surg. 5:82–88, 1989.

    PubMed  CAS  Google Scholar 

  40. Woo, S. L.-Y. Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14:29–39, 1972.

    Article  PubMed  CAS  Google Scholar 

  41. www.fda.gov/cdrh/pdf/k993153.pdf and www.fda.gov/cdrh/pdf/k001211.pdf

  42. www.refractec.com/US/Professional/1110.asp

  43. Zienkiewicz, O. C., and Y. C. Cheung, The Finite Element Method in Structural and Continuum Mechanics. London: McGraw-Hill, 1967, pp. 193.

    Google Scholar 

  44. Cabrera Fernández, D., A.-S. Niazy, G. P. Djotyan, and R. M. Kurtz, T. Juhasz. Finite element analysis applied to cornea reshaping. J. Biomed. Opt. (in press)

Download references

ACKNOWLEDGMENTS

This research was funded by NIH 1 R01 EY014163-01 and NIH R44 EY 12340-02. The authors thank Dr Michael R. Bryant of the Doheny Eye Institute, University of Southern California School of Medicine, for his assistance in the early stages of the work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cabrera Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, D.C., Niazy, A.M., Kurtz, R.M. et al. A Finite Element Model for Ultrafast Laser–Lamellar Keratoplasty. Ann Biomed Eng 34, 169–183 (2006). https://doi.org/10.1007/s10439-005-9014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9014-3

Keywords

Navigation