Skip to main content
Log in

Electrode Array for Reversing the Recruitment Order of Peripheral Nerve Stimulation: Experimental Studies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

One of the most challenging problems in peripheral nerve stimulation is the ability to activate selectively small axons without large ones. Electrical stimulation of peripheral nerve activates large diameter fibers before small ones. Currently available techniques for selective activation of small axons without large ones require long-duration stimulation pulses (>500 μs) and large stimulation amplitude, which shorten battery life of the implanted stimulator and could lead to electrode corrosion. In the current study, the hypothesis that small axons can be recruited before large ones with narrow pulsewidth (50 μs) using an electrode array was tested in both simulations simulation and experiments in the cat lateral gastrocnemius (LG) model. The LG nerve innervates both LG and soleus muscle groups with axons within 10–13 and 8–12 μm diameter ranges, respectively. A finite element model of LG nerve was constructed and simulations showed that, when activating 40% of LG, a conventional tripolar electrode activated only 9% of soleus whereas the electrode arrays of 5, 7, and 11 contacts activated 39, 46, and 60% of soleus respectively, suggesting that the arrays could activate small axons before fully recruiting large axons. In animal experiments, peak twitch force of LG and soleus were plotted as a function of stimulation amplitude to indicate the recruitment curve. At 40% activation of LG, a conventional tripolar electrode activated only 7% of soleus whereas the electrode arrays of 5, 7, and 11 contacts activated 43, 48, and 72% of soleus respectively. The electrode arrays also decreased significantly the recruitment curve slopes to only 10–20% of the value obtained for the tripolar electrode in both computer simulations and experiments. In conclusion, the 5-, 7-, and 11-contact arrays can be used to reverse the recruitment order of peripheral nerve stimulation with a narrow pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

REFERENCES

  1. Baratta, R., M. Ichie, S. K. Hwang, and M. Solomonow. Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 36(8):836–843, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Bhadra, N., V. Grunewald, G. Creasey, and J. T. Mortimer. Selective suppression of sphincter activation during sacral anterior nerve root stimulation. Neurourol. Urodyn. 21(1):55–64, 2002.

    Article  PubMed  Google Scholar 

  3. Burke, R. E., and P. Tsairis. Anatomy and innervation ratios in motor units of cat gastrocnemius. J. Physiol. 234(3):749–765, 1973.

    PubMed  CAS  Google Scholar 

  4. Choi, A. Q., J. K. Cavanaugh, and D. M. Durand. Selectivity of multiple-contact nerve cuff electrodes: A simulation analysis. IEEE Trans Biomed. Eng. 48(2):165–172, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Deurloo, K. E., J. Holsheimer, and P. Bergveld. The effect of subthreshold prepulses on the recruitment order in a nerve trunk analyzed in a simple and a realistic volume conductor model. Biol. Cybern. 85(4):281–291, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Fang, Z. P., and J. T. Mortimer. A method to effect physiological recruitment order in electrically activated muscle. IEEE Trans. Biomed. Eng. 38(2):175–179, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Geddes, L. A., and L. E. Baker. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5(3):271–293, 1967.

    Article  PubMed  CAS  Google Scholar 

  8. Gorman, P. H., and J. T. Mortimer. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans. Biomed. Eng. 30(7):407–414, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Grill, W. M., and J. T. Mortimer. Stimulus waveforms for selective neural stimulation. IEEE Eng. Med. Biol. Mag. 14(4):375–385, 1995.

    Article  Google Scholar 

  10. Henneman, E., G. Somjen, and D. O. Carpenter. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28:560–580, 1965.

    PubMed  CAS  Google Scholar 

  11. Hursh, J. M. Conduction velocity and diameter of nerve. Am. J. Physiol. 127:131, 1939.

    Google Scholar 

  12. Koldewijn, E. L., N. J. Rijkhoff, E. V. van Kerrebroeck, F. M. Debruyne, and H. Wijkstra. Selective sacral root stimulation for bladder control: Acute experiments in an animal model. J. Urol. 151(6):1674–1679, 1994.

    PubMed  CAS  Google Scholar 

  13. Lertmanorat, Z., and D. M. Durand. A novel electrode array for diameter-dependent control of axonal excitability: A simulation study. IEEE Trans. Biomed. Eng. 51(7):1242–1250, 2004.

    Article  PubMed  Google Scholar 

  14. Lertmanorat, Z., and D. M. Durand. Extracellular voltage profile for reversing the recruitment order; of peripheral nerve stimulation: A simulation study. J. Neural Eng. 1:202–211, 2004.

    Article  PubMed  Google Scholar 

  15. Lertmanorat, Z., and D. M. Durand. Reversing the recruitment order with electrode array stimulation. In Proceedings—25th International Conference—IEEE/EMBS. 2003. Cancun, Mexico.

  16. Lertmanorat, Z., K. J. Gustafson, and D. M. Durand. Orderly recruitment order of peripheral nerve stimulation with electrode array. In Proceedings—2th International Conference—IEEE/EMBS on Neural Engineering. 2005. VA, USA.

  17. Leventhal, D. K., and D. M. Durand. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode. IEEE Trans. Biomed. Eng. 51(9):1649–1658, 2004.

    Article  PubMed  Google Scholar 

  18. McNeal, D. R. Analysis of a model for excitation of myelinated nerve. IEEE Trans. Biomed. Eng. 23(4):329–337, 1976.

    Article  PubMed  CAS  Google Scholar 

  19. McNeal, D. R., L. L. Baker, and J. T. Symons. Recruitment data for nerve cuff electrodes: Implications for design of implantable stimulators. IEEE Trans. Biomed. Eng. 36(3):301–308, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. McPhedran, A. M., R. B. Wuerker, and E. Henneman. Properties of Motor Units in a Homogeneous Red Muscle (Soleus) of the Cat. J. Neurophysiol. 28:71–84, 1965.

    PubMed  CAS  Google Scholar 

  21. Mortimer, J. T. Motor prostheses. In: Handbook of Physiology: The Nervous System, edited by V. B. Brooks. Bethesda, MD: American Physiological Society, 1981, pp. 155–187.

  22. Peckham, P. H., and G. H. Creasey, Neural prostheses: clinical applications of functional electrical stimulation in spinal cord injury. Paraplegia, 1992, 30(2): pp. 96–101.

  23. Ranck, J. B., and S. L. Be Ment. Specific impedance of the dorsal columns of cat; An anisotropic medium. Exp. Neurol. 11:451–463, 1965.

    Article  PubMed  Google Scholar 

  24. Richardson, A. G., C. C. McIntyre, and W. M. Grill. Modelling the effects of electric fields on nerve fibres: Influence of the myelin sheath. Med. Biol. Eng. Comput. 38(4):438–446, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Rijkhoff, N. J., E. L. Kldewijn, W. d'Hollosy, F. M. Dbruyne, and H. Wijkstra. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation. Neurourol. Urodyn. 15(3):235–248, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Rijkhoff, N. J., L. B. Hendrikx, P. E. van Kerrebroeck, F. M. Debruyne, and H. Wijkstra. Selective detrusor activation by electrical stimulation of the human sacral nerve roots. Artif. Organs 21(3):223–226, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Robblee, L. S., and T. L. Rose. Electrochemical guidelines for selection of protocols and elctrode materials for neural stimulation. In: Neural Prostheses: Fundamental Studies, edited by W. F. M. Agnew, D. B. McCreery. Englewood Cliffs, NJ: Prentice Hall, 1990, pp. 25–66.

  28. Romero, E., O. Cuisenaire, J. F. Denef, J. Delbeke, B. Macq, and C. Veraart. Automatic morphometry of nerve histological sections. J. Neurosci. Methods 97(2):111–122, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Rozman, J., B. Sovinec, M. Trlep, and B. Zorko. Multielectrode spiral cuff for ordered and reversed activation of nerve fibres. J. Biomed. Eng. 15(2):113–120, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Sassen, M., and M. Zimmermann. Differential blocking of myelinated nerve fibres by transient depolarization. Pflugers Arch. 341(3):179–195, 1973.

    Article  PubMed  CAS  Google Scholar 

  31. Schwarz, J. R., G. Reid, and H. Bostock. Action potentials and membrane currents in the human node of Ranvier. Pflugers Arch. 430(2):283–292, 1995.

    Article  PubMed  CAS  Google Scholar 

  32. Solomonow, M. External control of the neuromuscular system. IEEE Trans. Biomed. Eng. 31(12):752–763, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Tai, C., and D. Jiang. Selective stimulation of smaller fibers in a compound nerve trunk with single cathode by rectangular current pulses. IEEE Trans. Biomed. Eng. 41(3):286–291, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Tanner, J. A. Reversible blocking of nerve conduction by alternating-current excitation. Nature 195:712–713, 1962.

    Article  PubMed  CAS  Google Scholar 

  35. Tasaki, I. Nerveous Transmission. Springfield, IL: Charless C Thomas, 1953.

  36. Tyler, D. J., and D. M. Durand. Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann. Biomed. Eng. 31(6):633–642, 2003.

    Article  PubMed  Google Scholar 

  37. Van Bolhuis, A. I., J. Holsheimer, and H. H. Savelberg. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. J. Neurosci. Methods 107(1–2):87–92, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Weerasuriya, A., R. A. Spangler, S. I. Rapoport, and R. E. Taylor. AC impedance of the perineurium of the frog sciatic nerve. Biophys J. 46(2):167–174, 1984.

    PubMed  CAS  Google Scholar 

  39. Weinman, J., and J. Mahler. An Analysis of Electrical Properties of Metal Electrodes. Med. Electron. Biol. Eng. 33:299–310, 1964.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique M. Durand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lertmanorat, Z., Gustafson, K.J. & Durand, D.M. Electrode Array for Reversing the Recruitment Order of Peripheral Nerve Stimulation: Experimental Studies. Ann Biomed Eng 34, 152–160 (2006). https://doi.org/10.1007/s10439-005-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9012-5

Keywords

Navigation