Skip to main content

Advertisement

Log in

Mechanical Optimization of an Arteriovenous Malformation Embolization Material: A Predictive Model Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arteriovenous malformations (AVMs) pose a constant danger of hemorrhages, seizures, and headaches to patients; they also disrupt oxygen-rich blood flow entering capillaries of the brain. We have utilized a linear model to mechanically characterize and optimize a water-borne, reverse emulsion, self-reactive, in situ cross-linking material, which we propose clinical use as an embolization material. The material is formed by cross-linking various acrylate and thiol multifunctional precursors with NaOH supplemented PBS. We compared theoretical elastic modulus values to modulus values observed during compression testing to determine the cross-linking efficiency of the material. Empirically determined elastic moduli for various material compositions ranged from 0.76 to 2.26 MPa, with corresponding cross-link efficiencies averaging 55± 4%. We predict a reduction in theoretical circumferential stress exerted on AVM vasculature from 4933 to 10.9 Pa after embolization with the optimal material configuration. Theoretical risk of AVM rupture, as defined by Hademenos et al,7 was reduced below 1.0% for extreme variations of vessel modulus, thickness, and blood pressure after embolization with the optimized material. We will be using this material configuration to embolize swine rete mirabile AVM models and further assess the clinical viability of this potential embolization material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, T. A., D. R. Kipke, and T. Brandon. Calcium algenate gel: A biocompatible and mechanically stable polymer for endovasular treatment. J. Biomed. Mat. Res. 54:76–86, 2001.

    Article  Google Scholar 

  2. Bicerano, J. Prediction of Polymer Properties, 3rd ed. New York: Marcel Dekker, 2002, 756 pp.

    Google Scholar 

  3. Davis, T. P., M. B. Huglin, and D. C. F. Yip. Properties of poly(N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethyleneglycol dimethacrylate. Polymer 29:701–706 1988.

    Article  Google Scholar 

  4. Elbert, D. L., A. B. Pratt, M. P. Lutolf, S. Halstenberg, and J. A. Hubbell. Protein delivery from materials formed by self-selective conjugate addition reactions. J. Controlled Release 76:11–25 2001.

    Article  Google Scholar 

  5. Fleischer, L. H., W. L. Young, J. Pile-Spellman, B. Penning, A. Kader, B. M. Stein, and J. P. Mohr. Relationship of transcranial doppler flow velocities and arteriovenous malformation feeding artery pressures. Stroke 24:1897–1902, 1993.

    Google Scholar 

  6. Friedman, M., J. F. Cavins, and J. S. Wall. Relative nucleophilic reactivities of amino groups and mercaptide ions in addition reactions with α,β-unsaturated compounds. J. Am. Chem. Soc. 87:3672–3682, 1965.

    Google Scholar 

  7. Fung, Y. C., and J. Zhou. The degree of nonlinearity and anisotropy of blood vessel elasticity Proc. Natl. Acad. Sci. 94:14255–14260, 1997.

    Article  Google Scholar 

  8. Hademenos, G. J., T. F. Massoud, and F. Viñuela. A biomathematical model on intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics concept. Neurosurgery 38:1992–1998, 1996.

    Article  Google Scholar 

  9. Hademenos, G. J., and T. F. Massoud. An electrical network model of intracranial arteriovenous malformations: analysis of variations in hemodynamic and biophysical parameters. Neur. Res, 18:575–589, 1996.

    Google Scholar 

  10. Hademenos, G. J., and T. F. Massoud. Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment. Stroke 27:1072–1083, 1996.

    CAS  PubMed  Google Scholar 

  11. Hamada, J., Y. Kai, M. Morioka, K. Kazekawa, Y. Ishimaru, H. Iwata, and Y. Ushio. A nonadhesive liquid embolic agent composed of ethylene vinyl alcohol copolymer and ethanol mixture for the treatment of cerebral arteriovenous malformations: experimental study. J. Neurosurg. 97:889–895, 2002.

    Google Scholar 

  12. Hillman, J. Population-based analysis of arteriovenous malformation treatment. J. Neurosurg. 95:633–637, 2001.

    Google Scholar 

  13. Hui, F., and P. Lasjaunias. Interventional neuroradiology in the management of paediatric cerebral arteriovenous malformations: illustrative study of three case reports. Ann. Acad. Med. Singapore 22:811–817, 1993.

    Google Scholar 

  14. Irie, K., S. Nagao, Y. Honma, K. Kunishio, T. Ogawa, and N. Kawai. Treatment of arteriovenous malformation of the brain—Preliminary experience. J. Clin. Neurosci. 7(Suppl. 1):24–29, 2000.

    Google Scholar 

  15. Jizong, Z., W. Shou, L. Jingsheng, S. Dali, Z. Yuanli, and Z. Yan. Combination of intraoperative embolisation with surgical resection for treatment of giant cerebral arteriovenous malformations. J. Clin. Neurosci. 7(Suppl. 1):54–59, 2000.

    Article  Google Scholar 

  16. Liu, H. M., Y. C. Huan, and Y. H. Wang. Embolization of cerebral arteriovenous malformations with n-butyl-2-cyanoacrylate. J. Formos. Med. Addoc. 99:906–913, 2000.

    Google Scholar 

  17. Liu, D., and X. C. Ma. Clinical study of embolization of arteriovenous malformation in the oral and maxillofacial region. Chin. J. Dent. Res. 3:63–70, 2000.

    Google Scholar 

  18. Lutolf, M., N. Tirelli, S. Cerritelli, L. Colussi, and J. A. Hubbell. Systematic modulation of (Michael-type) reactivity of thiols through the use of charged amino acids. Bioconj. Chem, 12:1051–1056, 2001.

    Article  Google Scholar 

  19. National Institute of Health: National Institute of Neurological Disorders and Stroke. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System. National Institute of Health, Bethesda, MD, December 2000, 23 pp.

  20. Pare, M. C., and M. Bojanowski. Surgical treatment of AVMs in eloquent zones of the brain: Apropos of eleven cases. Ann. Chir 45:811–815, 1991.

    Google Scholar 

  21. Pierkarski, K. Structure, properties and rheology of bone. In: Orthopaedic Mechanics: Procedures and Devices, edited by D. N. Ghista, and R. Roaf. New York: Academic Press, 1978, pp. 1–20.

    Google Scholar 

  22. Ratner, B. D., A. S. Hoffman, F. J. Schoen, and J. E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Academic Press, 1996, 484 pp.

    Google Scholar 

  23. Rodriguez, E., and I. Katime. Some mechanical properties of poly[(acrylic acid)-co(itaconic acid)] hydrogels. Mocromol. Mater. Eng. 288:607–612, 2003.

    Article  Google Scholar 

  24. Söderman, M., T. Andersson, B. Karlsson, M. C. Wallace, and G. Edner. Management of patients with brain arteriovenous malformations. Eur. J. Radiol. 46:195–205, 2003.

    Article  Google Scholar 

  25. Spetzler, R. F., and N. A. Martin. A proposed grading system for arteriovenous malformations. J. Neurosurg. 65:476–483, 1986.

    Article  Google Scholar 

  26. Tokunaga, K., K. Kinugasa, S. Kawada, H. Nakashima, T. Tamiya, N. Hirotsune, S. Mandai, and T. Ohmoto. Embolization of cerebral arteriovenous malformations with cellulose acetate polymer: a clinical, radiological, and histological study. Neurosurgery 44:981–990, 1999.

    Article  Google Scholar 

  27. Tokunaga K, K. Kinugasa, T. Meguro, K. Sugiu, H. Nakashima, S. Mandai, and T. Ohmoto. Curative treatment of cerebral arteriovenous malformations by embolization using cellulose acetate polymer followed by surgical resection. J. Clin. Neurosci. 7(Suppl. 1):1–5, 2000.

    Article  Google Scholar 

  28. Vernon, B., N. Tirelli, T. Bächi, D. Haldimann, and J. A. Hubbell. Water-borne, in situ cross-linked biomaterials from phase segregated precursors. J. Biomed. Mat. Res. 64A:447–456, 2003.

    Article  Google Scholar 

  29. Wallace, R., and E. Bourekas. Brain arteriovenous malformations. Neuroimag. Clin. N. Am. 8:383–399, 1998.

    Google Scholar 

  30. Wilkolm, G. Occlusion of cerebral arteriovenous malformations with N-butyl-cyano-acrylate is permanent. ANJR Am. J. Neuroradiol. 46:479–482, 1995.

    Google Scholar 

  31. Young, W. L., A. Kader, J. Pile-Spellman, E. Ornstein, and B. M. Stein. Arteriovenous malformation draining vein physiology and determinants of transnidal pressure gradients. Neurosurgery 35:389–396, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Vernon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birdno, M., Vernon, B. Mechanical Optimization of an Arteriovenous Malformation Embolization Material: A Predictive Model Analysis. Ann Biomed Eng 33, 191–201 (2005). https://doi.org/10.1007/s10439-005-8977-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8977-4

Keywords

Navigation