Skip to main content
Log in

Computation of Adherent Cell Elasticity for Critical Cell-Bead Geometry in Magnetic Twisting Experiments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of the cell elastic modulus is a central issue of micromanipulation techniques used to analyze the mechanical properties of living adherent cells. In magnetic twisting cytometry (MTC), magnetic beads of radius R, linked to the cell cytoskeleton through transmembrane receptors, are twisted. The relationships between imposed external torque and measured resulting bead rotation or translation only provide values of the apparent cell stiffness. Thus, specific correcting coefficients have to be considered in order to derive the cell elastic modulus. This issue has been highlighted in previous studies, but general relationships for handling such corrections are still lacking while they could help to understand and reduce the large dispersion of the reported values of cell elastic modulus. Thiswork establishes generalized abacuses of the correcting coefficients from which the Young’s modulus of a cell probed byMTCcan be derived. Based on a 3Dfinite element analysis of an hyperelastic (neo-Hookean) cell, we show that the dimensionless ratio hu/2R, where hu is the cell height below the bead, is an essential parameter for quantification of the cell elasticity. This result could partly explain the still intriguing question of the large variation of measured elastic moduli with probe size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caille, N., O. Thoumine,Y. Tardy, and J. J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187, 2002.

    Article  Google Scholar 

  2. Charras, G. T., and M. A. Horton. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83:858–879, 2002.

    Google Scholar 

  3. Chen, J., B.Fabry, E.L.Schiffrin and N.Wang. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280:C1475–C1484, 2001.

    Google Scholar 

  4. Djordjevic, V. D., J. Jaric, B. Fabry, J. J. Fredberg, and D. Stamenovic. Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31:692–699, 2003.

    Article  Google Scholar 

  5. Doornaert, B., V. Leblond, E. Planus, S. Galiacy, V. M. Laurent, G. Gras, D. Isabey, and C. Lafuma. Time course of actin cytoskeleton stifness and matrix adhesion molecules in human bronchial epithelial cell cultures. Exp. Cell Res. 287:199–208, 2003.

    Article  Google Scholar 

  6. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Google Scholar 

  7. Fabry, B., G. N. Maksym, S. A. Shore, P. E. Moore, R. A. Panettieri Jr., J. P. Butler, and J. J. Fredberg. Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91:986–994, 2001a.

    Google Scholar 

  8. Fabry, B., G. N. Maksym, J. P. Butler,M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102-1–148102-4, 2001b.

    Article  Google Scholar 

  9. Fabry, B., G. N. Maksym, J. P. Butler,M. Glogauer, D. Navajas, N. A. Taback, E. J. Millet, and J. J. Fredberg. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68:041914-1–041914-18, 2003.

    Article  Google Scholar 

  10. Fodil, R., V. Laurent, E. Planus, and D. Isabey. Characterization of cytoskeleton mechanical properties and 3D-actin structure in twisted adherent epithelial cells. Biorheology 40:241–245, 2003.

    Google Scholar 

  11. Hamill, O. P., and B. Martinac. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685–740, 2001.

    Google Scholar 

  12. Holzapfel, G. A. Nonlinear Solid Mechanics. New York:Wiley, 2001.

    Google Scholar 

  13. Hu, S., J. Chen, B. Fabry, Y. Numaguchi, A. Gouldstone, D. E. Ingber, J. J. Fredberg, J. P. Butler, and N. Wang. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells, Am. J. Physiol. 285:C1082–C1090, 2003.

    Google Scholar 

  14. Hubmayr, R. D., S. A. Shore, J. J. Fredberg, E. Planus, R. A. Panettieri Jr, W. Moller, J. Heyder, and N. Wang. Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am. J. Physiol. 271:C1660–C1668, 1996.

    Google Scholar 

  15. Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763–781, 1998.

    Google Scholar 

  16. Karcher, H., J. Lammerding, H. Huang, R. T. Lee, R. D. Kamm, and M. R. Kaazempur-Mofrad. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85:3336–3349, 2003.

    Article  Google Scholar 

  17. Laurent, V. M., S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey, and F. Gallet. Assessment of mechanical properties of adherent living cells by bead micromanipulation: Comparison of magnetic twisting cytometry vs optical tweezers. ASME J. Biomech. Eng. 124:408–421, 2002.

    Article  Google Scholar 

  18. Laurent, V. M., R. Fodil, P. Cañadas, S. Féréol, B. Louis, E. Planus, and D. Isabey. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. J. Biomed. Eng. 31:1263–1278, 2003.

    Article  Google Scholar 

  19. Maksym, G. N., B. Fabry, J. P. Butler, D. Navajas, D. J. Tschumperlin, J. D. Laporte, and J. J. Fredberg. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J. Appl. Physiol. 89:1619–1632, 2000.

    Google Scholar 

  20. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.

    Article  Google Scholar 

  21. Mijailovich, S. M., M. Kojic, M. Zivkovic, B. Fabry, and J. J. Fredberg. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93:1429–1436, 2002.

    Google Scholar 

  22. Ohayon, J., P. Tracqui, R. Fodil, S. Féréol, V. M. Laurent, E. Planus, and D. Isabey. Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: A finite element model based on an homogenization approach. J. Biomech. Eng. 126(6), 2004, in press.

  23. Rahman, A., Y. Tseng, and D.Wirtz. Micromechanical coupling between cell surface receptors andRGDpeptides. Biochem. Biophys. Res. Commun. 296:771–778, 2002.

    Article  Google Scholar 

  24. Schneider, S.W., P. Pagel, C. Rotsch, T. Danker,H. Oberleithner, M. Radmacher, and A. Schwab. Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch. 439:297–303, 2000.

    Article  Google Scholar 

  25. Trickey, W. R., T. P. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes, J. Orthop. Res. 22: 131–139, 2004.

    Article  Google Scholar 

  26. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127,1993.

    CAS  PubMed  Google Scholar 

  27. Wang, N., and D. E. Ingber. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73:327–335, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques Ohayon or Philippe Tracqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohayon, J., Tracqui, P. Computation of Adherent Cell Elasticity for Critical Cell-Bead Geometry in Magnetic Twisting Experiments. Ann Biomed Eng 33, 131–141 (2005). https://doi.org/10.1007/s10439-005-8972-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8972-9

Keywords

Navigation