Skip to main content
Log in

Biofluid Mechanics of the Pulmonary System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Presents an overview of leading areas of discovery in biofluid mechanics related to the pulmonary system, with particular reference to the airways. Areas briefly reviewed include airway gas dynamics, impedance studies, collapsible-tube studies, and airway liquid studies. Emphasis is placed on promising further directions, such as analysis of interacting fluid-mechanical or fluid-structure phenomena, multi-scale modeling across widely varying length and time scales, and integration of advanced simulations into respiratory investigation and pulmonary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med. 342(18):1301–1308, 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.

  2. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2001, in Vital and Health Statistics. 2004, U.S. Department of Health and Human Services.

  3. Aittokallio, T., M. Gyllenberg, and O. Polo. A model of a snorer's upper airway. Math. Biosci. 170:79–90, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. Alencar, A. M., S. V. Buldyrev, A. Majumdar, H. E. Stanley, and B. Suki. Avalanche dynamics of crackle sound in the lung. Phys. Rev. Lett. 87(8):088101, 2001.

    Article  Google Scholar 

  5. Banzett, R. B., C. S. Nations, N. Wang, J. J. Fredberg, and J. P. Butler. Pressure profiles show features essential to aerodynamic valving in geese. Respir. Physiol. 84(3):295–309, 1991.

    Article  Google Scholar 

  6. Berke, G. S., D. C. Green, M. E. Smith, D. P. Arnstein, V. Honrubia, M. Natividad, and W. A. Conrad. Experimental evidence in the in vivo canine for the collapsible tube model of phonation. JASA 89:1358–1363, 1991.

    Google Scholar 

  7. Bertram, C. D. Experimental studies of collapsible tubes. In: Flow Past Highly Compliant Boundaries and in Collapsible Tubes, edited by P. W. Carpenter and T. J. Pedley, Dordrecht: Kluwer Academic Publishers, 2003, pp. 51–65.

    Google Scholar 

  8. Bertram, C. D., and J. Tscherry. Towards matched simulations and experiments on the onset of flow-induced collapsed-tube oscillation. In: World Congress of Medical Physics and Biomedical Engineering. Sydney, Australia, 2003.

  9. Bull, J. L., and J. B. Grotberg, Surfactant spreading on thin viscous films: Film thickness evolution and periodic wall stretch. Exp. Fluids 34(1):1–15, 2003.

    Google Scholar 

  10. Bull, J. L., L. K. Nelson, J. T. Walsh Jr, M. R. Glucksberg, S. Schurch, and J. B. Grotberg. Surfactant-spreading and surface-compression disturbance on a thin viscous film. J. Biomech. Eng. 121(1):89–98, 1999.

    Google Scholar 

  11. Cassidy, K. J., N. Gavriely, and J. B. Grotberg. Liquid plug flow in straight and bifurcating tubes. J. Biomech. Eng. 123(6):580–589, 2001.

    Article  Google Scholar 

  12. Cassidy, K. J., D. Halpern, B. G. Ressler, and J. B. Grotberg. Surfactant effects in model airway closure experiments . J. Appl. Physiol. 87(1):415–427, 1999.

    Google Scholar 

  13. Dos Santos, C. C., and A. S. Slutsky. Invited review: Mechanisms of ventilator-induced lung injury: A perspective. J. Appl. Physiol. 89(4):1645–1655, 2000.

    Google Scholar 

  14. Eckmann, D. M., and J. B. Grotberg. Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188:509–527, 1988.

    MATH  Google Scholar 

  15. Elad, D., A. Shochat, and R. J. Shiner. Computational model of oscillatory airflow in a bronchial bifurcation. Respir. Physiol. 112(1):95–111, 1998.

    Article  Google Scholar 

  16. Espinosa, F. F., and R. D. Kamm. Bolus dispersal through the lungs in surfactant replacement therapy. J. Appl. Physiol. 86(1):391–410, 1999.

    Google Scholar 

  17. Espinosa, F. F., A. H. Shapiro, J. J. Fredberg, and R. D. Kamm. Spreading of exogenous surfactant in an airway. J. Appl. Physiol. 75(5):2028–2039, 1993.

    Google Scholar 

  18. Fee, M. S., B. Shraiman, B. Pesaran, and P. P. Mitra. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395(6697):67–71, 1998.

    Article  Google Scholar 

  19. Feng, Z. C., and C.-S. Poon. Pendelluft flow in symmetric airway bifurcations. ASME J. Biomech. Eng. 120:463–467, 1998.

    Google Scholar 

  20. Fodil, R., C. Ribreau, B. Louis, F. Lofaso, and D. Isabey. Interaction between steady flow and individualised compliant segments: application to upper airways. Med. Biol. Eng. Comput. 35(6):638–648 [correction published in vol. 636(632), p. 258], 1997.

    Google Scholar 

  21. Fuhrman, B. P., L. J. Hernan, B. A. Holm, C. L. Leach, M. C. Papo, and D. M. Steinhorn. Perfluorocarbon associated gas-exchange (PAGE): Gas ventilation of the perfluorocarbon filled lung. Artif. Cells Blood Substit. Immobilization Biotechnol. 22(4):1133–1139, 1994.

    Google Scholar 

  22. Fujioka, H., K. Oka, and K.Tanashita. Oscillatory flow and gas transport through a symmetrical bifurcation. ASME J. Biomech. Eng. 123:145–153, 2001.

    Google Scholar 

  23. Gaver III, D. P., and J. B. Grotberg. An experimental investigation of oscillating flow in a tapered channel. J. Fluid Mech. 172:47–67, 1986.

    Google Scholar 

  24. Gaver III, D. P., and J. B. Grotberg. The dynamics of a localized surfactant on a thin film. J. Fluid Mech. 213:127–148, 1990.

    MATH  Google Scholar 

  25. Gaver III, D. P., and J. B. Grotberg. Droplet spreading on a thin viscous film. J. Fluid Mech. 235:399–414, 1992.

    Google Scholar 

  26. Gaver III, D. P., D. Halpern, and O. E. Jensen. Surfactant and airway liquid flows. In: Molecular Mechanisms in Lung Surfactant (Dys)function, edited by K. Nag. New York: Marcel Dekker, 2005.

    Google Scholar 

  27. Gaver III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69(1):74–85, 1990.

    Google Scholar 

  28. Gavriely, N., D. P. Gaver III, J. Solway, and J. B. Grotberg. Comparative study of intra-airway gas transport by alternative modes of ventilation. J. Appl. Physiol. 79(5):1512–1518, 1995.

    Google Scholar 

  29. Gavriely, N., and O. Jensen. Theory and measurement of snores. J. Appl. Physiol. 74(6):2828–2837, 1993.

    Google Scholar 

  30. Gavriely, N., T. R. Shee, D. W. Cugell, and J. B. Grotberg. Flutter in flow-limited collapsible tubes: A mechanism for generation of wheezes. J. Appl. Physiol. 66:2251–2261, 1989.

    Google Scholar 

  31. Ghadiali, S. N., and D. P. Gaver III. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. J. Appl. Physiol. 88(2):493–506, 2000.

    Google Scholar 

  32. Ghadiali, S. N., and D. P. Gaver III. The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical tube. J. Fluid Mech. 478:165–196, 2003.

    Article  MATH  Google Scholar 

  33. Grotberg, J. B. Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26:529–571, 1994.

    Article  MATH  Google Scholar 

  34. Grotberg, J. B. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3:421–457, 2001.

    Article  Google Scholar 

  35. Grotberg, J. B., D. Halpern, and O. E. Jensen. Interaction of exogenous and endogenous surfactant: Spreading-rate effects. J. Appl. Physiol. 78(2):750–756, 1995.

    Google Scholar 

  36. Grotberg, J. B., and O. E. Jensen. Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36:121–147, 2004.

    Article  MathSciNet  Google Scholar 

  37. Hall, P., and K. H. Parker. The stability of the decaying flow in a suddenly blocked channel. J. Fluid Mech. 75:305–314, 1976.

    MATH  Google Scholar 

  38. Halpern, D., and J. B. Grotberg. Dynamics and transport of a localized soluble surfactant on a thin film. J. Fluid Mech. 237: 1–11, 1992.

    MATH  Google Scholar 

  39. Halpern, D., and J. B. Grotberg. Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244:615–632, 1992.

    MATH  Google Scholar 

  40. Halpern, D., and J. B. Grotberg. Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: A model of airway closure. Trans. ASME J. Biomech. Eng. 115(3):271–277, 1993.

    Google Scholar 

  41. Halpern, D., and J. B. Grotberg. Oscillatory shear stress induced stabilization of thin film instabilities. In: IUTAM Symposium on Non-Linear Waves in Multi-Phase Flow, edited by H. C. Chang. Dordrecht, The Netherlands: Kluwer Academic, pp. 33–43, 2000.

    Google Scholar 

  42. Halpern, D., and J. B. Grotberg. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube. J. Fluid Mech. 492:251–270, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  43. Halpern, D., O. E. Jensen, and J. B. Grotberg. A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85(1):333–352, 1998.

    Google Scholar 

  44. Halpern, D., J. A. Moriarty, and J. B. Grotberg. Capillary-elastic instabilities with an oscillatory forcing function. In: IUTAM Symposium on Non-Linear Singularities in Deformation and Flow, edited by D. Durban and J. R. A. Pearson. Dordrecht, The Netherlands: Kluwer Academic, 1999, pp. 243–255.

    Google Scholar 

  45. Halpern, D., S. Naire, O. E. Jensen, and D. P. Gaver III. Unsteady bubble propagation in a flexible channel: Predictions of a viscous stick-slip instability. J. Fluid Mech. 528:53–86, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  46. Hantos, Z., J. Tolnai, T. Asztalos, F. Petak, A. Adamicza, A. M. Alencar, A. Majumdar, and B. Suki. Acoustic evidence of airway opening during recruitment in excised dog lungs. J. Appl. Physiol. 97(2): 592–598, 2004.

    Article  Google Scholar 

  47. Hazel, A. L., and M. Heil. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes. J. Fluid Mech. 486:79–103, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  48. Hazel, A. L., and M. Heil. Three-dimensional airway reopening: The steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478:47–70, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  49. Hazel, A. L., and M. Heil. Three-dimensional airway reopening: The steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478:47–70, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  50. Heil, M. Airway closure: Occluding liquid bridges in strongly buckled elastic tubes. Trans. ASME J. Biomech. Eng. 121(5): 487–493, 1999.

    Google Scholar 

  51. Heil, M. Minimal liquid bridges in non-axisymmetrically buckled elastic tubes. J. Fluid Mech. 380:309–337, 1999.

    Article  MATH  Google Scholar 

  52. Henry, F. S., J. P. Butler, and A. Tsuda. Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theories. J. Appl. Physiol. 92(2):835–845, 2002.

    Google Scholar 

  53. High, K. C., J. S. Ultman, and S. R. Karl. Mechanically induced Pendelluft flow in a model airway bifurcation during high frequency oscillation. ASME J. Biomech. Eng. 113:342–347, 1991.

    Google Scholar 

  54. Hill, M. J., T. A. Wilson, and R. K. Lambert. Effects of surface tension and intraluminal fluid on mechanics of small airways. J. Appl. Physiol. 82(1):233–239, 1997.

    Google Scholar 

  55. Hörschler, I., M. Meinke, and W. Schröder. Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32:39–45, 2003.

    MATH  Google Scholar 

  56. Hsu, S. H., K. P. Strohl, M. A. Haxhiu, and A. M. Jamieson. Role of viscoelasticity in the tube model of airway reopening. II. Non-Newtonian gels and airway simulation. J. Appl. Physiol. 80(5):1649–1659, 1996.

    Google Scholar 

  57. Hsu, S.-H., K. P. Strohl, and A. M. Jamieson. Role of viscoelasticity in tbe tube model of airway reopening I. Nonnewtonian sols. J. Appl. Physiol. 76(6):2481–2489, 1994.

    Google Scholar 

  58. Huang, L., S. J. Quinn, P. D. M. Ellis, and J. E. Ffowcs Williams. Biomechanics of snoring. Endeavour 19:96–100, 1995.

    Article  Google Scholar 

  59. Hunter, E. J., I. R. Titze, and F. Alipour. A three-dimensional model of vocal fold abduction/adduction. J. Acoust. Soc. Am. 115(4):1747–1759, 2004.

    Google Scholar 

  60. Ikeda, T., and Y. Matsuzaki. Effects of collision of the vocal cords on speech sound waves. In: ASME Summer Bioengineering Conference. Sunriver, Oregon, 1997.

  61. Janssens, J. P., M. C. Nguyen, F. R. Herrman, and J. P. Michel. Diagnostic value of respiratory impedance measurements in elderly subjects. Respir. Med. 95(5):415–422, 2001.

    Google Scholar 

  62. Jensen, O. E. An asymptotic model of viscous flow limitation in a highly collapsed channel. ASME J. Biomech. Eng. 120:544–546, 1998.

    Google Scholar 

  63. Jensen, O. E., and J. B. Grotberg. Insoluble surfactant spreading on a thin film: Shock evolution and film rupture. J. Fluid Mech. 240:259–288, 1992.

    MathSciNet  MATH  Google Scholar 

  64. Jensen, O. E., M. K. Horsburgh, D. Halpern, and D. P. Gaver. The steady propagation of a bubble in a flexible-walled channel: Asymptotic and computational models. Phys. Fluids. 14(2): 443–457, 2002.

    Article  Google Scholar 

  65. Johnson, M., R. D. Kamm, L. W. Ho, A. Shapiro, T. J. Pedley. The nonlinear growth of surface-tension-driven instabilities of a thin annular film. J. Fluid Mech. 233:141–156, 1991.

    MATH  Google Scholar 

  66. Kamm, R. D. Airway wall mechanics. Annu. Rev. Biomed. Eng. 1: 47–72, 1999.

    Article  Google Scholar 

  67. Krueger, M. A., and D. P. Gaver III. A theoretical model of pulmonary surfactant multilayer collapse under oscillating area conditions. J. Colloid Interface Sci. 229(2):353–364, 2000.

    Article  Google Scholar 

  68. LaRose, P. G., and J. B. Grotberg. Flutter and long-wave instabilities in compliant channels conveying developing flows. J. Fluid Mech. 331:37–58, 1997.

    Article  MATH  Google Scholar 

  69. Lighthill, M. J. Mathematical Biofluiddynamics. Regional Conference Series in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics, 1975.

    MATH  Google Scholar 

  70. Lorino, A. M., F. Lofaso, E. Dahan, A. Harf, and H. Lorino. Respiratory impedance response to continuous negative airway pressure in awake controls and OSAS. Eur. Respir. J. 17(1):71–78, 2001.

    Article  Google Scholar 

  71. Louis, B., R. Fodil, S. Jaber, J. Pigeot, P. H. Jarreau, F. Lofaso, and D. Isabey. Dual assessment of airway area profile and respiratory input impedance from a single transient wave. J. Appl. Physiol. 90(2):630–637, 2001.

    Google Scholar 

  72. Luo, X. Y., and T. J. Pedley. Multiple solutions and flow limitation in collapsible channel flows. J. Fluid Mech. 420:301–324, 2000.

    Article  MATH  Google Scholar 

  73. Lutchen, K. R., K. Yang, D. W. Kaczka, and B. Suki. Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J. Appl. Physiol. 75(1):478–488, 1993.

    Google Scholar 

  74. MacLeod, D., and M. Birch. Respiratory input impedance measurement: Forced oscillation methods. Med. Biol. Eng. Comput. 39(5):505–516, 2001.

    Google Scholar 

  75. Mead, J. Expiratory flow limitation: A physiologist's point of view. Fed. Proc. 39:2771–2775, 1980.

    Google Scholar 

  76. Muscedere, J. G., J. B. M. Mullen, K. Gan, and A. S. Slutsky. Tidal ventilation at low airway pressures can augment lung injury. Am. J. Respir. Critical Care Medicine. 149:1327–1334, 1994.

    Google Scholar 

  77. Nahum, A. Partial liquid ventilation. Clinical Pulmonary Medicine 10(2):93–99, 2003.

    Google Scholar 

  78. Naureckas, E. T., C. A. Dawson, B. S. Gerber, D. P. Gaver III, H. L. Gerber, J. H. Linehan, J. Solway, and R. W. Samsel. Airway reopening pressure in isolated rat lungs. J. Appl. Physiol. 76(3):1372–1377, 1994.

    Google Scholar 

  79. Nishida, M., Y. Inaba, and K. Tanashita. Gas dispersion in a model pulmonary bifurcation during oscillatory flow. ASME J. Biomech. Eng. 119:309–316, 1997.

    Google Scholar 

  80. Nowak, N., P. P. Kakade, and A. V. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31(4):374–390, 2003.

    Article  Google Scholar 

  81. Otis, D. R. Jr., E. P. Ingenito, R. D. Kamm, and M. Johnson. Dynamic surface tension of surfactant TA: Experiments and theory. J. Appl. Physiol. 77(6):2681–2688, 1994.

    Google Scholar 

  82. Otis, D. R. Jr., M. Johnson, T. J. Pedley, and R. D. Kamm. Role of pulmonary surfactant in airway closure: A computational study. J. Appl. Physiol. 75(3):1323–1333, 1993.

    Google Scholar 

  83. Owens, D. R., B. Zinman, and G. Bolli. Alternative routes of insulin delivery. Diabet Med. 20(11):886–898, 2003.

    Article  Google Scholar 

  84. Pedley, T. J., P. Corieri, R. D. Kamm, J. B. Grotberg, P. E. Hydon, and R. C. Schroter. Gas flow and mixing in the airways. Crit. Care Med. 22(9 suppl.): S24–S36, 1994.

    Google Scholar 

  85. Pedley, T. J., and R. D. Kamm. The effect of secondary motion on axial transport in oscillatory tube flow. J. Fluid Mech. 193:347–367, 1988.

    MATH  Google Scholar 

  86. Pedley, T. J., and X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theor. Comput. Fluid Dyn. 10:277–294, 1998.

    Article  MATH  Google Scholar 

  87. Perun, M. L., and D. P. Gaver III. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. Trans. ASME J. Biomech. Eng. 117:1–9, 1995.

    Article  Google Scholar 

  88. Perun, M. L., and D. P. Gaver III. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 79(5):1717–1728, 1995.

    Google Scholar 

  89. Peslin, R., R. Farre, M. Rotger, and D. Navajas. Effect of expiratory flow limitation on respiratory mechanical impedance: A model study. J. Appl. Physiol. 81(6):2399–2406, 1996.

    Google Scholar 

  90. Poort, K. L., and J. J. Fredberg. Airway area by acoustic reflection: A corrected derivation for the two-microphone method. ASME J. Biomech. Eng. 121(6):663–665, 1999.

    Google Scholar 

  91. Rugonyi, S., and K.-J. Bathe. On the analysis of fully coupled fluid flows with structural interactions—A coupling and condensation procedure. Int. J. Comput. Civil Struct. Eng. 1:29–41, 2000.

    Google Scholar 

  92. Sharp, M. K., R. D. Kamm, A. H. Shapiro, E. Kimmel, and G. E. Karniadakis. Dispersion in a curved tube during oscillatory flow. J. Fluid Mech. 223:537–563, 1991.

    Google Scholar 

  93. Slutsky, A. S., F. M. Drazen, R. H. Ingram Jr, R. D. Kamm, A. H. Shapiro, J. J. Fredberg, S. H. Loring, and J. Lehr. Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209:609–610, 1980.

    Google Scholar 

  94. Story, B. H., and I. R. Titze. Voice simulation with a body-cover model of the vocal folds. J. Acoust. Soc. Am. 97:1249–1260, 1995.

    Article  Google Scholar 

  95. Sujeer, M. K., S. V. Buldyrev, S. Zapperi, J. S. Andrade Jr, H. E. Stanley, B. Suki. Volume distributions of avalanches in lung inflation: A statistical mechanical approach. Phys. Rev. E. 56(3):3385–3394, 1997.

    Article  Google Scholar 

  96. Suki, B., A. L. Barabasi, Z. Hantos, F. Petak, and H. E. Stanley. Avalanches and power-law behaviour in lung inflation. Nature 368:615–618, 1994.

    Article  Google Scholar 

  97. Sukumar, M., M. Bommaraju, J. E. Fisher, F. C. Morin III, M. C. Papo, B. P. Fuhrman, L. J. Hernan, and C. L. Leach. High-frequency partial liquid ventilation in respiratory distress syndrome: Hemodynamics and gas exchange. J. Appl. Physiol. 84(1):327–334, 1998.

    Google Scholar 

  98. Tanaka, G., Y. Ueda, and K. Tanashita. Augmentation of axial dispersion by intermittent oscillatory flow. ASME J. Biom. Eng. 120:405–415, 1998.

    Google Scholar 

  99. Tawhai, M. H., and K. S. Burrowes. Developing integrative computational models of pulmonary structure. Anat. Rec. 275B(1):207–218, 2003.

    Article  Google Scholar 

  100. Titze, I. R., and E. J. Hunter. Normal vibration frequencies of the vocal ligament. J. Acoust. Soc. Am. 115(5):2264–2269, 2004.

    Article  Google Scholar 

  101. Trease, H. Viscoelastic modeling of the respiratory tract. International Biofluid Mechanics Conference. California Institute of Technology, 2003.

  102. Tsuda, A., R. D. Kamm, and J. J. Fredberg. Periodic flow at airway bifurcations. II. Flow partitioning. J. Appl. Physiol. 69(2):553–561, 1990.

    Google Scholar 

  103. Tsuzaki, K., and R. D. Kamm. Flow distribution in a single bifurcation during high-frequency oscillation. Respir. Physiol. 82(1):89–105, 1990.

    Article  Google Scholar 

  104. Venegas, J. G., and J. J. Fredberg. Understanding the pressure cost of ventilation: Why does high-frequency ventilation work? Crit. Care Med. 22(9 suppl.): S49–S57, 1994.

    Article  Google Scholar 

  105. Von Neergaard, K. Neue auffassungen über einen grundbegriff der atemmechanik. Die retraktionskraft der lunge, abhängig von der oberflächenspannung in den alveolen. Z. Gesamte Exp. Med. 66:373–394, 1929.

    Google Scholar 

  106. Waters, S. L., and J. B. Grotberg. The propagation of a surfactant laden liquid plug in a capillary tube. Phys. Fluids. 14(2):471–480, 2002.

    Article  Google Scholar 

  107. Weinhold, I., and G. Mlynski. Numerical simulation of airflow in the human nose. European Archives of Oto-Rhino-Laryngology: published on-line 3 December, 2003.

  108. Wolf, M., S. Naftali, R. C. Schroter, and D. Elad. Air-conditioning characteristics of the human nose. J. Laryngol. Otol. 118(2):87–92, 2004.

    Article  Google Scholar 

  109. Yager, D., R. D. Kamm, and J. M. Drazen. Airway wall liquid. Sources and role as an amplifier of bronchoconstriction. Chest 107(3 Suppl):105S–110S, 1995.

    Google Scholar 

  110. Yap, D. Y., W. D. Liebkemann, J. Solway, and D. P. Gaver III. Influences of parenchymal tethering on the reopening of closed pulmonary airways. J. Appl. Physiol. 76(5):2095–2105, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, C.D., Gaver, D.P. Biofluid Mechanics of the Pulmonary System. Ann Biomed Eng 33, 1681–1688 (2005). https://doi.org/10.1007/s10439-005-8758-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8758-0

Keywords

Navigation