Skip to main content
Log in

De-Activation of Neutrophils in Suspension by Fluid Shear Stress: A Requirement for Erythrocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Leukocyte de-activation in response to a mechanical stimulus may be an important mechanism to reduce inflammation in the circulation and cardiovascular complications. We examine here a specific form of leukocyte activation in the form of pseudopod projection, a process that is important during cell spreading and migration, but if it occurs in circulating leukocytes, may also lead to their entrapment in the microvascular network. Fresh neutrophils were activated with fMLP, suspended without adhesion to endothelium, and sheared in a cone-and-plate device while both shear stress and shear rate were measured. A fraction of the activated neutrophils retracted their pseudopods under the influence of fluid shear and returned to round shape. Pseudopod retraction was observed only in the presence of erythrocytes (at shear stresses up to ~25 dyn/cm2). At a constant hematocrit and increasing plasma viscosities with addition of macromolecules, the number of de-activated neutrophils scaled with shear stress and less so with shear rate. We examined a biochemical and rheological role of erythrocytes during shear de-activation of neutrophils. Addition of superoxide dismutase (SOD) in phosphate buffer served to enhance neutrophil de-activation by fluid shear. Replacement of erythrocytes by solid microspheres (5.4 μm) to simulate the particle properties of the erythrocytes, did not serve to enhance neutrophil de-activation unless in the presence of SOD. At higher shear stresses without erythrocytes (38–77 dyn/cm2), we also observed neutrophil de-activation but only in the presence of SOD. These results suggest that erythrocytes play an important role in neutrophil de-activation by reducing the superoxide level in plasma. Shear stress, rather than shear rate, is the key determinant that regulates neutrophil de-activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 9:996–1003, 1999.

    Google Scholar 

  2. Bengtsson, T., A. Fryden, S. Zalavary, P. A. Whiss, K. Orselius, and M. Grenegard. Platelets enhance neutrophil locomotion: Evidence for a role of P-selectin. Scand. J. Clin. Lab. Invest. 59:439–450, 1999.

    Article  PubMed  Google Scholar 

  3. Buerk, D. G., K. L. Lamkin-Kennard, and D. Jaron. Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition oxygen consumption. Free Radic. Biol. Med. 34:1488–1503, 2003.

    Article  PubMed  Google Scholar 

  4. Buttrum, S. M., R. Haton, and G. B. Nash. Selectin-mediated rolling of neutrophils on immobilized platelets. Blood 82:1165–1174, 1993.

    PubMed  Google Scholar 

  5. Chen, H.-Q., W. Tian, Y.-S. Chen, L. Li, J. Raum, and K.-L. P. Sung. Effect of steady and oscillatory shear stress on F-actin content and distribution in neutrophils. Biorheology 41:655–664, 2004.

    PubMed  Google Scholar 

  6. Cinamon, G., V. Shinder, and R. Alon. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2:515–522, 2000.

    Article  Google Scholar 

  7. Coughlin, M. F., and G. W. Schmid-Schönbein. Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys. J. 87:2035–2042, 2004.

    Article  PubMed  Google Scholar 

  8. Dewitz, T. S., T. C. Hung, R. R. Martin, and L. V. McIntire. Mechanical trauma in leukocytes. J. Lab. Clin. Med. 90:728–736, 1997.

    Google Scholar 

  9. Dong, C., R. Skalak, K.-L. P. Sung, G. W. Schmid-Schönbein, and S. Chien. Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110:27–36, 1988.

    PubMed  Google Scholar 

  10. Fukuda, S., T. Yasu, D. N. Predescu, and G. W. Schmid-Schönbein. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ. Res. 86:e13–e18, 2000.

    PubMed  Google Scholar 

  11. Fukuda, S., and G. W. Schmid-Schönbein. Centrifugation attenuates the fluid shear response of circulating leukocytes. J. Leukoc. Biol. 72:133–139, 2002.

    PubMed  Google Scholar 

  12. Fukuda, S., and G. W. Schmid-Schönbein. Regulation of CD18 expression on neutrophils in response to fluid shear stress. Proc. Natl. Acad. Sci. U.S.A. 100:13152–13157, 2003.

    Article  PubMed  Google Scholar 

  13. Fukuda, S., H. Mitsuoka, and G. W. Schmid-Schönbein. Leukocyte fluid shear response in the presence of glucocorticoid. J. Leukoc. Biol. 75:664–670, 2004.

    Article  PubMed  Google Scholar 

  14. Hampton, M. B., A. J. Kettle, and C. C. Winterbourn. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017, 1998.

    PubMed  Google Scholar 

  15. Heikkila, R. E., F. S. Cabbat, and G. Cohen. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate. J. Biol. Chem. 251:2182–2185, 1976.

    PubMed  Google Scholar 

  16. Hentzen, E., D. McDonough, L. McIntire, C. W. Smith, H. L Goldsmith, and S. I. Simon. Hydrodynamic shear and tethering through E-selectin signals phosphorylation of p38 MAP kinase and adhesion of human neutrophils. Ann. Biomed. Eng. 30:987–1001, 2002.

    Article  PubMed  Google Scholar 

  17. Hu, H., D. Varon, P. Hjemdahl, N. Savion, S. Schulman, and N. Li. Platelet–leukocyte aggregation under shear stress: Differential involvement of selectins and integrins. Thromb. Haemost. 90:679–687, 2003.

    PubMed  Google Scholar 

  18. Johnson, R. M. Membrane stress increase cation permeability in red cells. Biophys. J. 67:1876–1881, 1994.

    PubMed  Google Scholar 

  19. Kelner, M. J., and N. M. Alexander. Inhibition of erythrocyte superoxide dismutase by diethyldithiocarbamate also results in oxyhemoglobin-catalyzed glutathione depletion and methemoglobin production. J. Biol. Chem. 261:1636–1641, 1986.

    PubMed  Google Scholar 

  20. Kitayama, J., A. Hidemura, H. Saito, and H. Nagawa. Shear stress affects migration behavior of polymorphonuclear cells arrested on endothelium. Cell. Immunol. 203:39–46, 2000.

    Article  PubMed  Google Scholar 

  21. Konstantopoulos, K., S. Neelamegham, A. R. Burns, E. Hentzen, G. S. Kansas, K. R. Snapp, E. L. Berg, J. D. Hellums, C. W. Smith, L. V. McIntire, and S. I. Simon. Venous levels of shear support neutrophil–platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin. Circulation 98(9):873–882, 1998.

    PubMed  Google Scholar 

  22. Konstantopoulos, K., S. Kukreti, and L. V. McIntire. Biomechanics of cell interactions in shear field. Adv. Drug Deliv. Rev. 33:141–164, 1998.

    Article  PubMed  Google Scholar 

  23. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    PubMed  Google Scholar 

  24. Lawrence, M. B., G. S. Kansas, E. J. Kunkel, and K. Ley. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E). J. Cell Biol. 136:717–727, 1997.

    Article  PubMed  Google Scholar 

  25. McAllister, T. N., and J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999.

    PubMed  Google Scholar 

  26. Moazzam, F., F. A. Delano, B. W. Zweifach, and G. W. Schmid-Schönbein. The leukocyte response to fluid stress. Proc. Natl. Acad. Sci. U.S.A. 94:5338–5343, 1997.

    Article  PubMed  Google Scholar 

  27. Nagata, K., T. Tsuji, N. Todoroki, Y. Katagiri, K. Tanoue, H. Yamazaki, N. Hanai, and T. Irimura. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J. Immunol. 151:3267–3273, 1993.

    PubMed  Google Scholar 

  28. Nimeri, G., M. Majeed, H. Elwing, L. Ohman, J. Wettero, and T. Bengtsson. Oxygen radical production in neutrophils interacting with platelets and surface-immobilized plasma proteins: Role of tyrosin phosphorylation. J. Biomed. Mater. Res. 67A:439–447, 2003.

    Article  Google Scholar 

  29. Rainger, G. E., C. D. Buckley, D. L. Simmons, and G. B. Nash. Neutrophils sense flow-generated stress and direct their migration through αv ß3-integrin. Am. J. Physiol. 276:H858–H864, 1999.

    PubMed  Google Scholar 

  30. Ramos, C. L., M. J. Smith, S. K. Snapp, G. S. Kansas, G. W. Stickney, K. Ley, and M. B. Lawrence. Functional characterization of L-selectin ligands on human neutrophils and leukemia cell lines: Evidence for mucinlike ligand activity distinct from P-selectin glycoprotein ligand-1. Blood 91:1067–1075, 1998.

    PubMed  Google Scholar 

  31. Resnick, N., H. Yahav, A. Shay-Salit, M. Shushy, S. Schubert, L. C. Zilberman, and E. Wofovitz. Fluid shear stress and the vascular endothelium: For better and for worse. Prog. Biophys. Mol. Biol. 81:177–199, 2003.

    Article  PubMed  Google Scholar 

  32. Ritter, L. S., D. S. Wilson, S. K. Williams, J. G. Copeland, and P. F. McDonagh. Early in reperfusion following myocardial ischemia, leukocyte activation is necessary for venular adhesion but not capillary retention. Microcirculation 2:315–327, 1995.

    PubMed  Google Scholar 

  33. Schmid-Schönbein, G. W., E. B. Kistler, and T. E. Hugli. Mechanisms for cell activation and its consequences for biorheology and microcirculation: Multiorgan failure in shock. Biorheology 38:185–202, 2000.

    Google Scholar 

  34. Schmidtke, D. W., and S. L. Diamond. Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J. Cell Biol. 149:719–729, 2000.

    Article  PubMed  Google Scholar 

  35. Sugihara-Seki, M., and G. W. Schmid-Schönbein. The fluid shear stress distribution on the membrane of leukocytes in the microcirculation. J. Biomech. Eng. 125:628–638, 2003.

    Article  PubMed  Google Scholar 

  36. Sutton, D. W., and G. W. Schmid-Schönbein. Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 262:H1646–H1650, 1992.

    PubMed  Google Scholar 

  37. Wettero, J., P. Tengvall, and T. Bengtsson. Platelets stimulated by IgG-coated surfaces bind and activate neutrophils through a selectin-dependent pathway. Biomaterials 24:1559–1573, 2003.

    Article  PubMed  Google Scholar 

  38. Worthen, G. S., B. Schwab, E. L. Elson, and G. P. Downey. Mechanics of stimulated neutrophils: Cell stiffening induces retention in capillaries. Science 245:183–186, 1989.

    PubMed  Google Scholar 

  39. Zweifach, B. W., and H. H. Lipowsky. Pressure-flow relations in blood and lymph microcirculation. In: Handbook of Physiology, Section 2: The Cardiovascular System, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiological Society, 1984, pp. 251–307.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Komai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komai, Y., Schmid-Schönbein, G.W. De-Activation of Neutrophils in Suspension by Fluid Shear Stress: A Requirement for Erythrocytes. Ann Biomed Eng 33, 1375–1386 (2005). https://doi.org/10.1007/s10439-005-6768-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-6768-6

Keywords

Navigation