Skip to main content

Advertisement

Log in

Spatial Variations in Shear Stress in a 3-D Bifurcation Model at Low Reynolds Numbers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Real-time wall shear stress is difficult to monitor precisely because it varies in space and time. Microelectromechanical systems sensor provides high spatial resolution to resolve variations in shear stress in a 3-D bifurcation model for small-scaled hemodynamics. At low Reynolds numbers from 1.34 to 6.7 skin friction coefficients (Cf) varied circumferentially by a factor of two or more within the bifurcation. At a Reynolds number of 6.7, the Cf value at the lateral wall of the bifurcation along the 270 plane was 7.1, corresponding to a shear stress value of 0.0061 dyn/cm2. Along the 180 plane, Cf was 13 or 0.0079 dyn/cm2, and at the medial wall along the 90 plane, Cf was 10.3 or 0.0091 dyn/cm2. The experimental skin friction coefficients correlated with values derived from the Navier–Stokes solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66(4):1045–1066, 1990.

    PubMed  Google Scholar 

  2. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223(211):1159–1160, 1969.

    PubMed  Google Scholar 

  3. Chandrasekaran, V., A. Chin, T. Nishida, L. N. Cattafesta, and M. Sheplak. Characterization of a Micromachined Thermal Shear Stress Sensor. In: 39th Aerospace Sciences Meeting & Exhibit.: American Institute of Aeronautics and Astronautics, Reno, NV, 2001.

  4. Chiuu, J. J., C. N. Chen, P. L. Lee, C. T. Yang, H. S. Chuang, S. Chien, and S. Usami. Analysis of the effect of disturbed flow on endothelial cells. J. Biomech. Eng. 120:2–8, 1998.

    PubMed  Google Scholar 

  5. DePaola, N., M. A. Gimborne, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992 (published erratum appears in Arterioscler. Thromb. 13(3):465, 1993).

    Google Scholar 

  6. Dewey, C. F. Jr., S. R. Bussolari, M. A. Gimborne, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    PubMed  Google Scholar 

  7. Dimmeler, S., and A. M. Zeiher. Akt takes center stage in angiogenesis signaling. Circ. Res. 86(1):4–5, 2000.

    PubMed  Google Scholar 

  8. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  9. Fung, Y. C. Biomechanics:Circulation, Dynamic Similarity. Reynolds and Womersley Numbers. Boundary Layers, 2nd ed. New York: Springer, 1997, pp. 130–132.

  10. Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels. J. Biochem. Eng. 115(1):1–12, 1993.

    Google Scholar 

  11. Glagov, S., C. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112(10):1018–1031, 1988.

    PubMed  Google Scholar 

  12. Haritonnidis, J. H. The measurement of shear stress in fluid mechanics measurements. In Advances in Fluid Mechanics Measurements (Gad-El-Hak, M., ed.) pp. 229–236, Springer-Verlag, New York, 1989.

  13. Ho, C. M., and Y. C. Tai. MEMS and its applications for flow control. J. Fluids Eng. 118:437–447, 1996.

    Google Scholar 

  14. Ho, C. M., and Y. C. Tai. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30:579–612, 1998.

    Article  Google Scholar 

  15. Hsiai, T. K., S. K. Cho, P. K. Wong, M. H. Ing, A. Salazar, A. Sevanian, M. Navab, L. L. Demer, and C. M. Ho. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17(12):1648–1657, 2003.

    Article  PubMed  Google Scholar 

  16. Hsiai, T. K., S. K. Cho, P. K. Wong, M. H. Ing, A. Salazar, S. Hama, M. Navab, L. L. Demer, and C. M. Ho. Micro sensors: Linking real-time oscillatory shear stress with vascular inflammatory responses. Ann. Biomed. Eng. 32(2):189–201, 2004.

    Article  PubMed  Google Scholar 

  17. Huang, J. B., C. M. Ho, S. Tung, C. Liu, and Y. C. Tai. Micro thermal shear stress sensor with and without cavity underneath. In: IEEE Proc. Instruments Measurement Technology Conf. (IMTC/95). 1995.

  18. Hwang, J., M. H. Ing, A. Salazar, B. Lassegue, K. Griendling, M. Navab, A. Sevanian, and T. K. Hsiai. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: Implication for native LDL oxidation. Circ. Res. 93(12):1225–1232, 2003.

    Article  PubMed  Google Scholar 

  19. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    PubMed  Google Scholar 

  20. Liu, C., J. B. Huang, Z. Zhu, F. Jinag, S. Tung, Y. C. Tai, and C. M. Ho. A micromachines flow shear-stress sensor based on thermal transfer principles. J. Microelectromech. Syst. 8(1):96–98, 1999.

    Article  Google Scholar 

  21. Sheplak, M., V. Chandrasekaran, A. Cain, T. Nishida, and L. N. Cattafesta. Characterization of a silicon-micromachined thermal shear-stress sensor. AIAA J. 40(6), 2002.

  22. Milkiewicz, M., M. D. Brown, S. Egginton, and O. Hudlicka. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8(4):229–241, 2001.

    Article  PubMed  Google Scholar 

  23. Nerem, R. M., R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, and W. R. Taylor. The study of the influence of flow on vascular endothelial biology Am. J. Med. Sci. 316:169–175, 1998.

    Article  PubMed  Google Scholar 

  24. Patan, S., L. Munn, and R. K. Jain. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc. Res. 51(2):260–272, 1996.

    Article  PubMed  Google Scholar 

  25. Scharfstein, H., W. H. Gutstein, and L. Lewis. Changes of boundary layer flow in model systems: Implications for initiation of endothelial injury. Circ. Res. 13:580–584, 1963.

    PubMed  Google Scholar 

  26. Seiler, F., and A. George. The Laser-Doppler-Velocimeter (LDV) used in the ISL shock tunnel. In: 0th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2000.

  27. Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl. Acad. Sci. USA 91(11):4678–4682, 1994.

    PubMed  Google Scholar 

  28. Soundararajan, G., M. Rouhanizadeh, H. Yu, E. S. Kim, and T. K. Hsiai. MEMS shear stress sensors for microcirculation. Sens. Actuators 118(1):25–32, 2005.

    Article  Google Scholar 

  29. Karino, T. Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases. Int. Angiol. 5(4):297–313, 1986.

    PubMed  Google Scholar 

  30. Traub, O., and B. C. Berk. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol}. 18(5):677–685, 1998.

    Google Scholar 

  31. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53(4):502–514, 1983.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouhanizadeh, M., Lin, T.C., Arcas, D. et al. Spatial Variations in Shear Stress in a 3-D Bifurcation Model at Low Reynolds Numbers. Ann Biomed Eng 33, 1360–1374 (2005). https://doi.org/10.1007/s10439-005-6542-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-6542-9

Keywords

Navigation