Skip to main content

Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiographic Imaging (ECGI)

Abstract

Electrocardiographic Imaging (ECGI) is a cardiac functional imaging modality, noninvasively reconstructing epicardial potentials, electrograms and isochrones (activation maps) from multi-channel body surface potential recordings. The procedure involves solving Laplace’s equation in the source-free volume conductor between torso and epicardial surfaces, using Boundary Element Method (BEM). Previously, linear interpolation (LI) on three-noded triangular surface elements was used in the BEM formulation. Here, we use quadratic interpolation (QI) for potentials over six-noded linear triangles. The performance of LI and QI in ECGI is evaluated through direct comparison with measured data from an isolated canine heart suspended in a human-torso-shaped electrolyte tank. QI enhances the accuracy and resolution of ECGI reconstructions for two different inverse methods, Tikhonov regularization and Generalized Minimal Residual (GMRes) method, with the QI-GMRes combination providing the highest accuracy and resolution. QI reduces the average relative error (RE) between reconstructed and measured epicardial potentials by 25%. It preserves the amplitude (average RE reduced by 48%) and morphology of electrograms better (average correlation coefficient for QI ∼ 0.97, LI ∼ 0.92). We also applied QI to ECGI reconstructions in human subjects during cardiac pacing, where QI locates ventricular pacing sites with higher accuracy (≤ 10 mm) than LI (≤ 18 mm).

This is a preview of subscription content, access via your institution.

References

  1. Beer, G., and J. O. Watson. Introduction to Finite and Boundary Element Methods for Engineers. West Sussex: Wiley, 1992.

    Google Scholar 

  2. Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25:96–111, 1997.

    PubMed  Google Scholar 

  3. Brebbia, C. A., J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques: Theory and Applications in Engineering. Berlin: Springer-Verlag, 1984.

    Google Scholar 

  4. Burnes, J. E., B. Taccardi, P. Ershler, and Y. Rudy. Noninvasive electrocardiographic imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol. 38:2071–2078, 2001.

    Article  PubMed  Google Scholar 

  5. Burnes, J. E., B. Taccardi, R. S. MacLeod, and Y. Rudy. Noninvasive ECG imaging of electrophysiologically abnormal substrate in infarcted hearts: A model study. Circulation 101:533–540, 2000.

    PubMed  Google Scholar 

  6. Burnes, J. E., B. Taccardi, and Y. Rudy. A noninvasive imaging modality for cardiac arrhythmias. Circulation 102:2152–2158, 2000.

    PubMed  Google Scholar 

  7. Burnes, J. E., D. C. Kaelber, B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. A field-compatible method for interpolating biopotentials. Ann. Biomed. Eng. 26:37–47, 1998.

    Article  PubMed  Google Scholar 

  8. Calvetti, D., B. Lewis, and L. Reichel. Gmres, L curves, and discrete ill-posed problems. BIT 42:44–65, 2002.

    Article  Google Scholar 

  9. Chati, M. K., and S. Mukherjee. The boundary node method for three-dimensional problems in potential theory. Int. J. Numer. Methods Eng. 47:1523–1547, 2000.

    Article  MathSciNet  Google Scholar 

  10. Colli Franzone, P., L. Guerri, S. Tentoni, C. Viganotti, S. Baruffi, S. Spaggiari, and B. Tacardi. Mathematical procedure for solving the inverse problem of electrocardiography. Math. Biosci. 77:353–396, 1985.

    Article  Google Scholar 

  11. Cruse, T. A. An improved boundary-integral equation method for three dimensional elastic stress analysis. Comput. Struct. 4:741–754, 1974.

    Article  Google Scholar 

  12. Ferguson, A. S., and G. Stroink. Factors affecting the accuracy of the boundary element method in the forward problem–I: Calculating surface potentials. IEEE Trans. Biomed. Eng. 44:1139–1155, 1997.

    Article  PubMed  Google Scholar 

  13. Fischer, G., B. Tilg, P. Wach, R. Modre, U. Leder, and H. Nowak. Application of high-order boundary elements to the electrocardiographic inverse problem. Comput. Methods Prog. Biomed. 58:119–131, 1999.

    Article  Google Scholar 

  14. Frijns, J. H. M., S. L. de Snoo, and R. Schoonhoven. Improving the accuracy of the boundary element method by the use of second order interpolation functions (EEG modeling application). IEEE Trans. Biomed. Eng. 47:1336–1346, 2000.

    Article  PubMed  Google Scholar 

  15. Gencer, N. G., and I. O. Tanzer. Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements. Phys. Med. Biol. 44:2275–2287, 1999.

    Article  PubMed  Google Scholar 

  16. Ghanem, R. N., J. E. Burnes A. L. Waldo, and Y. Rudy. Imaging dispersion of myocardial repolarization II. Noninvasive reconstruction of epicardial measures. Circulation 104:1306–1312, 2001.

    PubMed  Google Scholar 

  17. Messinger-Rapport, B. J., and Y. Rudy. Non-invasive recovery of epicardial potentials in a realistic heart-torso geometry: Normal sinus rhythm. Circ. Res. 66:1023–1039, 1990.

    PubMed  Google Scholar 

  18. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Electrocardiographic imaging: Noninvasive characterization of intramural myocardial activation from inverse reconstructed epicardial potentials and electrograms. Circulation 97:1496–1507, 1998.

    PubMed  Google Scholar 

  19. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms and isochrones, and localization of single and multiple electrocardiac events. Circulation 96:1012–1024. 1997.

    PubMed  Google Scholar 

  20. Ramanathan, C., P. Jia, R. N. Ghanem, D. Calvetti, and Y. Rudy. Noninvasive electrocardiographic imaging (ECGI): Application of the generalized minimal residual (GMRes) method. Ann. Biomed. Eng. 31:981–994, 2003.

    Article  PubMed  Google Scholar 

  21. Ramanathan, C., R. N. Ghanem, P. Jia, K. Ryu, and Y. Rudy. Electrocardiographic imaging (ECGI) : A noninvasive imaging modality for cardiac electrophysiology and arrhythmia. Nat. Med. 10:422–428, 2004.

    Article  PubMed  Google Scholar 

  22. Ramanathan, C., and Y. Rudy. Electrocardiographic imaging:II. Effect of torso inhomogeneities on the noninvasive reconstruction of epicardial potentials, electrograms and isochrones. J. Cardiovasc. Electrophysiol. 12:241–252, 2001.

    Article  PubMed  Google Scholar 

  23. Rudy, Y., and B. J. Messinger-Rapport. The inverse problem in electrocardiography: Solutions in terms of epicardial potentials. Crit. Rev. Biomed. Eng. 16:215–268, 1988.

    PubMed  Google Scholar 

  24. Rudy, Y., and H. S. Oster. The electrocardiographic inverse problem. Crit. Rev. Biomed. Eng. 20:25–46, 1992.

    PubMed  Google Scholar 

  25. Rudy, Y., and J. E. Burnes. Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4:340–359, 1999.

    Google Scholar 

  26. Sosa, E., M. Scanavacca, and A. D’Avila. Endocardial and epicardial ablation guided by non-surgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J. Cardiovasc. Electrophysiol. 9:229–239, 1998.

    PubMed  Google Scholar 

  27. Taccardi, B., E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation 90:3076–3090, 1994.

    PubMed  Google Scholar 

  28. Tikhonov, A. N., and V. Y. Arsenin. Solutions of Ill-posed Problems. New York: Wiley, 1977.

    Google Scholar 

  29. Van Uitert, R., D. Weinstein, C. R. Johnson, and L. Zhukov. Finite element EEG and MEG simulations for realistic head models: Quadratic vs. linear approximations. J. Biomedizinische Technik (special issue) 46:32–34. 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Rudy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghosh, S., Rudy, Y. Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiographic Imaging (ECGI). Ann Biomed Eng 33, 1187–1201 (2005). https://doi.org/10.1007/s10439-005-5537-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5537-x

Keywords