Skip to main content

Advertisement

Log in

A Surface–Regional and Freeze–Thaw Characterization of the Porcine Temporomandibular Joint Disc

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The temporomandibular joint (TMJ) disc is a central element in several TMJ disorders. Tissue-engineered TMJ disc replacements may alleviate discomfort associated with TMJ disorders; however, prior to developing a replacement, a thorough understanding of the native disc must be attained. Toward this end, we developed an unconfined compression, incremental stress relaxation viscoelastic model which simultaneously incorporates the strain increment magnitude and total deformation in the stress relaxation solution. This multiple strain step model was fit to stress relaxation data from (i) 80 test sites from eight porcine TMJ discs for the purposes of a surface–regional characterization and (ii) 30 test sites from five porcine TMJ discs for the purposes of a freeze–thaw characterization. The model estimated viscoelastic parameters accurately and surface–regional variations were detected throughout the TMJ disc. Regionally, the medial and anterior regions have the largest relaxation moduli, and the posterior and anterior regions have the largest instantaneous moduli. The inferior surface was found to have higher instantaneous modulus values than the superior surface. Furthermore, material properties were retained over five freeze–thaw cycles. The results of this study allow for the creation of design and validation criteria for future engineering efforts and shed light on the disc’s role in TMJ function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, K. D., and K. A. Athanasiou. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression. J. Biomech., in press.

  2. Almarza, A. J., and K. A. Athanasiou. Design characteristics for the tissue engineering of cartilaginous tissues. Ann. Biomed. Eng. 32(1):2–17, 2004.

    Article  PubMed  Google Scholar 

  3. Bass, E. C., N. A. Duncan, and J. S. Hariharan. Frozen storage affect the compressive creep behavior of the porcine intervertebral disc. Spine 22:2867–2876, 1997.

    Article  PubMed  Google Scholar 

  4. Beek, M., J. H. Koolstra, L. J. van Ruijven, and T. M. van Eijden. Three-dimensional finite element analysis of the human temporomandibular joint disc. J. Biomech. 33:307–316, 2000.

    Article  PubMed  Google Scholar 

  5. Bermejo, A., O. Gonzalez, and J. M. Gonzalez. The pig as an animal model for experimentation on the temporomandibular articular complex. Oral Surg. Oral Med. Oral Pathol. 75:18–23, 1993.

    Article  PubMed  Google Scholar 

  6. Carlsson, G. E. Epidemiology and treatment need for temporomandibular disorders. J. Orofac. Pain 13:232–237, 1999.

    PubMed  Google Scholar 

  7. Chen, J., U. Akyuz, L. Xu, and R. M. Pidaparti. Stress analysis of the human temporomandibular joint. Med. Eng. Phys. 20:565–572, 1998.

    Article  PubMed  Google Scholar 

  8. Chin, L. P., F. D. Aker, and K. Zarrinnia. The viscoelastic properties of the human temporomandibular joint disc. J. Oral Maxillofac. Surg. 54:315–318 (discussion, pp. 318–319), 1996.

    Article  PubMed  Google Scholar 

  9. Del Pozo, R., E. Tanaka, M. Tanaka, M. Okazaki, and K. Tanne. The regional difference of viscoelastic property of bovine temporomandibular joint disc in compressive stress-relaxation. Med. Eng. Phys. 24(3):165–171, 2002.

    Article  PubMed  Google Scholar 

  10. Detamore, M. S., and K. A. Athanasiou. Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng. 9(6):1065–1087, 2003.

    Article  PubMed  Google Scholar 

  11. Detamore, M. S., and K. A. Athanasiou. Tensile properties of the porcine temporomandibular joint disc. J. Biomech. Eng. 125(4):558–565, 2003.

    Article  PubMed  Google Scholar 

  12. Dhillon, N., E. C. Bass, and J. C. Lotz. Effect of frozen storage on the creep behavior of human intervertebral discs. Spine 26:883–888, 2001.

    Article  PubMed  Google Scholar 

  13. Estabrooks, L. N., C. E. Fairbanks, R. J. Collett, and L. Miller. A retrospective evaluation of 301 TMJ Proplast-Teflon implants. Oral Surg. Oral Med. Oral Pathol. 70:381–386, 1990.

    PubMed  Google Scholar 

  14. Fung, Y. C. Foundations of Solid Mechanics, New Jersey: Prentice Hall, 1965.

    Google Scholar 

  15. Gillbe, G. V. The function of the disc of the temporomandibular joint. J. Prosthet. Dent. 33:196–204, 1975.

    PubMed  Google Scholar 

  16. Havener, D. L., Jr., J. D. Sexton, and S. B. Aragon. Orthodontic and orthognathic management of malocclusion in a patient with history of Proplast-Teflon TMJ disc implantation. Orthod. Rev. 4:18–32, 1990.

    Google Scholar 

  17. Henry, C. H., and L. M. Wolford. Treatment outcomes for temporomandibular joint reconstruction after Proplast-Teflon implant failure. J. Oral Maxillofac. Surg. 51:352–358 (discussion, pp. 359–360), 1993.

    PubMed  Google Scholar 

  18. Herring, S. W. Animal models of temporomandibular disorders: How to choose. In: Temporomandibular Disorders and Related Pain Conditions, edited by B. J. Sessle, P. S. Bryant, and R. A. Dionne. Seattle: IASP Press, 1995, pp. 323–328.

    Google Scholar 

  19. Herring, S. W., and Z. J. Liu. Loading of the temporomandibular joint: Anatomical and in vivo evidence from the bones. Cells Tissue Org. 169:193–200, 2001.

    Google Scholar 

  20. Johansson, A., L. Unell, G. E. Carlsson, B. Sèoderfeldt, and A. Halling. Gender difference in symptoms related to temporomandibular disorders in a population of 50-year-old subjects. J. Orofac. Pain 17(1):29–35, 2003.

    PubMed  Google Scholar 

  21. Kim, K. W., M. E. Wong, J. F. Helfrick, J. B. Thomas, and K. A. Athanasiou. Biomechanical characterization of the superior joint space of the porcine temporomandibular joint. Ann. Biomed. Eng. 31:924–930, 2003.

    PubMed  Google Scholar 

  22. Kirk, W. S., Jr. Morphologic differences between superior and inferior disc surfaces in chronic internal derangement of the temporomandibular joint. J. Oral Maxillofac. Surg. 48:455–460, 1990.

    PubMed  Google Scholar 

  23. Kondoh, T., P. L. Westesson, T. Takahashi, and K. Seto. Prevalence of morphological changes in the surfaces of the temporomandibular joint disc associated with internal derangement. J. Oral Maxillofac. Surg. 56:339–343 (discussion, pp. 334–343), 1998.

    PubMed  Google Scholar 

  24. Lewis, G. R. Mandibular positioning skills with respect to age. N. Z. Dent. J. 97(427):4–8, 2001.

    PubMed  Google Scholar 

  25. Lewis, R. P., P. H. Buschang, and G. S. Throckmorton. Sex differences in mandibular movements during opening and closing. Am. J. Orthod. Dentofacial Orthop. 120(3):294–303, 2001.

    PubMed  Google Scholar 

  26. Mariotti, A., D. Rumpf, O. Malakhova, and B. Cooper. Gender-specific differences in temporomandibular retrodiscal tissues of the goat. Eur. J. Oral Sci. 108(5):461–463, 2000.

    PubMed  Google Scholar 

  27. Neidert, M. R., R. V. Devireddy, R. T. Tranquillo, and J. C. Bischof. Cryopreservation of collagen-based tissue equivalents. II. Improved freezing in the presence of cryoprotective agents. Tissue Eng. 10(1/2):23–32, 2004.

    PubMed  Google Scholar 

  28. Osborn, J. W. The disc of the human temporomandibular joint: Design, function and failure. J. Oral Rehabil. 12:279–293, 1985.

    PubMed  Google Scholar 

  29. Palla, S., L. M. Gallo, and D. Gèossi. Dynamic stereometry of the temporomandibular joint. Orthod. Craniofac. Res. 6(Suppl. 1):37–47, 2003.

    PubMed  Google Scholar 

  30. Posselt, U. The temporomandibular joint syndrome and occlusion. J. Prosthet. Dent. 25(4):432–438, 1971.

    PubMed  Google Scholar 

  31. Raphael, K. G., J. J. Marbach, L. M. Wolford, S. E. Keller, and J. A. Bartlett. Self-reported systemic, immune-mediated disorders in patients with and without proplast-teflon implants of the temporomandibular joint. J. Oral Maxillofac. Surg. 57:364–370 (discussion, pp. 370–361), 1999.

    PubMed  Google Scholar 

  32. Rees, L. A. The structure and function of the mandibular joint. Br. Dent. J. 96:125–133, 1954.

    Google Scholar 

  33. Scapino, R. P., P. B. Canham, H. M. Finlay, and D. K. Mills. The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch. Oral Biol. 41:1039–1052, 1996.

    PubMed  Google Scholar 

  34. Solberg, W. K. Epidemiology, incidence and prevalence of temporomandibular disorders: A review. In: Diagnosis and Management of Temporomandibular Disorders, edited by D. Laskin, W. Greenfield, E. Gale, J. Rugh, D. Neft, C. Alling, and W. A. Dyer. Chicago, IL: American Dental Association, 1983, pp. 30–39.

  35. Solberg, W. K., M. W. Woo, and J. B. Houston. Prevalence of mandibular dysfunction in young adults. J. Am. Dent. Assoc. 98:25–34, 1979.

    PubMed  Google Scholar 

  36. Spencer, A. J. The estimation of need for dental care. J. Pub. Health Dent. 40(4):311–327, 1980.

    Google Scholar 

  37. Ström, D., S. Holm, E. Clemensson, T. Haraldson, and G. E. Carlsson. Gross anatomy of the mandibular joint and masticatory muscles in the domestic pig (Sus scrofa). Arch. Oral Biol. 31:763–768, 1986.

    PubMed  Google Scholar 

  38. Sun, Z., Z. J. Liu, and S. W. Herring. Movement of temporomandibular joint tissues during mastication and passive manipulation in miniature pigs. Arch. Oral Biol. 47:293–305, 2002.

    PubMed  Google Scholar 

  39. Tanaka, E., J. Aoyama, M. Tanaka, T. Van Eijden, M. Sugiyama, K. Hanaoka, M. Watanabe, and K. Tanne. The proteoglycan contents of the temporomandibular joint disc influence its dynamic viscoelastic properties. J. Biomed. Mater. Res. 65A(3):386–392, 2003.

    Google Scholar 

  40. Tanaka, E., R. del Pozo, M. Tanaka, D. Asai, M. Hirose, T. Iwabe, and K. Tanne. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Med. Eng. Phys. 26(6):503–511, 2004.

    PubMed  Google Scholar 

  41. Tanaka, E., N. Kawai, K. Hanaoka, T. Van Eijden, A. Sasaki, J. Aoyama, M. Tanaka, and K. Tanne. Shear properties of the temporomandibular joint disc in relation to compressive and shear strain. J. Dent. Res. 83(6):476–479, 2004.

    PubMed  Google Scholar 

  42. Tanaka, E., N. Kawai, M. Tanaka, M. Todoh, T. van Eijden, K. Hanaoka, D. A. Dalla-Bona, T. Takata, and K. Tanne. The frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading. J. Dent. Res. 83(5):404–407, 2004.

    PubMed  Google Scholar 

  43. Tanaka, E., D. P. Rodrigo, Y. Miyawaki, K. Lee, K. Yamaguchi, and K. Tanne. Stress distribution in the temporomandibular joint affected by anterior disc displacement: A three-dimensional analytic approach with the finite-element method. J. Oral Rehabil. 27:754–759, 2000.

    PubMed  Google Scholar 

  44. Tanaka, E., A. Sasaki, K. Tahmina, K. Yamaguchi, Y. Mori, and K. Tanne. Mechanical properties of human articular disk and its influence on TMJ loading studied with the finite element method. J. Oral Rehabil. 28:273–279, 2001.

    PubMed  Google Scholar 

  45. Tanne, K., E. Tanaka, and M. Sakuda. The elastic modulus of the temporomandibular joint disc from adult dogs. J. Dent. Res. 70:1545–1548, 1991.

    PubMed  Google Scholar 

  46. Trumpy, I. G., and T. Lyberg. Surgical treatment of internal derangement of the temporomandibular joint: Long-term evaluation of three techniques. J. Oral Maxillofac. Surg. 53:740–746 (discussion, pp. 746–747), 1995.

    PubMed  Google Scholar 

  47. Werner, J. A., B. Tillmann, and A. Schleicher. Functional anatomy of the temporomandibular joint. A morphologic study on human autopsy material. Anat. Embryol. 183:89–95, 1991.

    PubMed  Google Scholar 

  48. Wolford, L. M. Temporomandibular joint devices: Treatment factors and outcomes. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 83:143–149, 1997.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, K.D., Athanasiou, K.A. A Surface–Regional and Freeze–Thaw Characterization of the Porcine Temporomandibular Joint Disc. Ann Biomed Eng 33, 951–962 (2005). https://doi.org/10.1007/s10439-005-3872-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3872-6

Keywords

Navigation