Skip to main content
Log in

Parameterization of Left Ventricular Wall Motion for Detection of Regional Ischemia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While qualitative wall motion analysis has proven valuable in clinical cardiology practice, quantitative analyses remain too time-consuming for routine clinical use. Our long-term goal is therefore to develop automated methods for quantitative wall motion analysis. In this paper, we utilize a finite element model of the regionally ischemic canine left ventricle to demonstrate a new approach based on parameterization of the left ventricular endocardial surface in prolate spheroidal coordinates. The parameterization provided a substantial data reduction and enabled simple definition, calculation, and display of three-dimensional fractional shortening (3DFS), a quantitative measure of wall motion analogous to the fractional shortening measure used in 2D analysis. The endocardial surface area displaying akinesis or dyskinesis by 3DFS corresponded closely to simulated ischemic region size and 3DFS identified appropriate wall motion abnormalities during experimental coronary occlusion in a canine pilot study. 3DFS therefore appears to be a reasonable candidate for clinical tests to determine its utility in identifying and quantifying acute regional ischemia in patients. By linking state of the art finite element models to the clinically relevant framework of wall motion analysis, the methods presented here will facilitate formulation, in silico prescreening, and clinical testing of additional candidate measures of wall motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa, K. D., P. J. Hunter, J. S. Wayne, L. K. Waldman, J. M. Guccione, and A. D. McCulloch. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II. Prolate spheroidal coordinates. J. Biomech. Eng. 118(4):464–472, 1996.

    PubMed  Google Scholar 

  2. Elhendy, A., D. W. Mahoney, B. K. Khandheria, T. E. Paterick, K. N. Burger, and P. A. Pellikka. Prognostic significance of the location of wall motion abnormalities during exercise echocardiography. J. Am. Coll. Cardiol. 40(9):1623–1629, 2002.

    Article  PubMed  Google Scholar 

  3. Gallagher, K. P., R. A. Gerren, M. C. Stirling, M. Choy, R. C. Dysko, S. P. McManimon, and W. R. Dunham. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ. Res. 58(4):570–583, 1986.

    PubMed  Google Scholar 

  4. Gerard, O., A. C. Billon, J. M. Rouet, M. Jacob, M. Fradkin, and C. Allouche. Efficient model-based quantification of left ventricular function in 3-D echocardiography. IEEE Trans. Med. Imaging 21(9):1059–1068, 2002.

    Article  PubMed  Google Scholar 

  5. Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26(1):19–35, 1993.

    Article  PubMed  Google Scholar 

  6. Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Mol. Biol. 52:101–164, 1988.

    Article  PubMed  Google Scholar 

  7. Marcovitz, P. A., and W. F. Armstrong. Accuracy of dobutamine stress echocardiography in detecting coronary artery disease. Am. J. Cardiol. 69(16):1269–1273, 1992.

    Article  PubMed  Google Scholar 

  8. Mazhari, R., J. H. Omens, J. W. Covell, and A. D. McCulloch. Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47(2):284–293, 2000.

    Article  PubMed  Google Scholar 

  9. Mazhari, R., J. H. Omens, L. K. Waldman, and A. D. McCulloch. Regional myocardial perfusion and mechanics: A model-based method of analysis. Ann. Biomed. Eng. 26(5):743–755, 1998.

    Article  PubMed  Google Scholar 

  10. Moynihan, P. F., A. F. Parisi, and C. L. Feldman. Quantitative detection of regional left ventricular contraction abnormalities by two-dimensional echocardiography. I. Analysis of methods. Circulation 63(4):752–760, 1981.

    PubMed  Google Scholar 

  11. Nielsen, P. M. F., I. J. LeGrice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260:H1365–H1378, 1991.

    Google Scholar 

  12. O’Boyle, J. E., A. F. Parisi, M. Nieminen, R. A. Kloner, and S. Khuri. Quantitative detection of regional left ventricular contraction abnormalities by 2-dimensional echocardiography. Comparison of myocardial thickening and thinning and endocardial motion in a canine model. Am. J. Cardiol. 51(10):1732–1738, 1983.

    Article  PubMed  Google Scholar 

  13. Pearlman, J. D., R. D. Hogan, P. S. Wiske, T. D. Franklin, and A. E. Weyman. Echocardiographic definition of the left ventricular centroid. I. Analysis of methods for centroid calculation from a single tomogram. J. Am. Coll. Cardiol. 16(4):986–992, 1990.

    PubMed  Google Scholar 

  14. Pellikka, P. A. Stress echocardiography in the evaluation of chest pain and accuracy in the diagnosis of coronary artery disease. Prog. Cardiovasc. Dis. 39(6):523–532, 1997.

    Article  PubMed  Google Scholar 

  15. Schiller, N. B., P. M. Shah, M. Crawford, A. DeMaria, R. Devereux, H. Feigenbaum, H. Gutgesell, N. Reichek, D. Sahn, I. Schnittger, N. H. Silverman, and A. J. Tajik. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 2(5):358–367, 1989.

    PubMed  Google Scholar 

  16. Segar, D. S., S. E. Brown, S. G. Sawada, T. Ryan, and H. Feigenbaum. Dobutamine stress echocardiography: Correlation with coronary lesion severity as determined by quantitative angiography. J. Am. Coll. Cardiol. 19(6):1197–1202, 1992.

    PubMed  Google Scholar 

  17. Streeter, D. D., Jr., and W. T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ. Res. 33(6):639–655, 1973.

    PubMed  Google Scholar 

  18. Wilkins, G. T., J. F. Southern, C. Y. Choong, J. D. Thomas, J. T. Fallon, D. E. Guyer, and A. E. Weyman. Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts. Circulation 77(5):978–987, 1988.

    PubMed  Google Scholar 

  19. Wiske, P. S., J. D. Pearlman, R. D. Hogan, T. D. Franklin, and A. E. Weyman. Echocardiographic definition of the left ventricular centroid. II. Determination of the optimal centroid during systole in normal and infarcted hearts. J. Am. Coll. Cardiol. 16(4):993–999, 1990.

    PubMed  Google Scholar 

  20. Young, A. Epicardial deformation from coronary cineangiograms. In: Theory of heart: Biomechanics, biophysics, and nonlinear dynamics of cardiac function, edited by L. Glass, P. Hunter, and A. McCulloch. New York: Springer-Verlag, 1991, pp. 175–207.

    Google Scholar 

  21. Zwas, D. R., S. Takuma, S. Mullis-Jansson, A. Fard, H. Chaudry, H. Wu, M. R. Di Tullio, and S. Homma. Feasibility of real-time 3-dimensional treadmill stress echocardiography. J. Am. Soc. Echocardiogr. 12(5):285–289, 1999.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, S.L., Ingrassia, C.M., Homma, S. et al. Parameterization of Left Ventricular Wall Motion for Detection of Regional Ischemia. Ann Biomed Eng 33, 912–919 (2005). https://doi.org/10.1007/s10439-005-3312-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3312-7

Keywords

Navigation