Skip to main content
Log in

A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this in vitro study, the velocity fields inside and downstream of two different prototype tri-lealfet polymeric heart valves were studied. Experiments were conducted on two 23 mm prototype polymeric valves, provided by AorTech Europe, having open or closed commissure designs and leaflet thickness of 120 and 80 μm, respectively. A two-dimensional LDV system was used to measure the velocity fields in the vicinity of the two valves under simulated physiological conditions. Both commissural design and leaflet thickness were found to affect the flow characteristics. In particular, very high levels of Reynolds shear stress of 13,000 dynes/cm2 were found in the leakage flow of the open commisure design. Maximum leakage velocities in the open and closed designs were 3.6 m/s and 0.5 m/s respectively; the peak forward flow velocities were 2.0 m/s and 2.6 m/s, respectively. In both valve designs, shear stress levels exceeding 4,000 dyne/cm2 were observed at the trailing edge of the leaflets and in the leakage and central orifice jets during peak systole. Additionally, regions of low velocity flow conducive to thrombus formation were observed in diastole. The flow structures measured in these experiments are consistent with the location of thrombus formation observed in preliminary animal experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernacca, G. M., T. G. Mackay, and D. J. Wheatley. In vitro function and durability of a polyurethane heart valve: Material considerations. J. Heart Valve Dis. 5(5):538–542, 1996.

    CAS  PubMed  Google Scholar 

  2. Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: Effects of leaflet thickness and material. Int. J. Artif. Organs 20(6):327–331, 1997.

    CAS  PubMed  Google Scholar 

  3. Bernacca, G. M., B. O’Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness. Biomaterials 23(1):45–50, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Chandran, K. B., R. Fatemi, R. Schoephoerster, D. Wurzel, G. Hansen, G. Pantalos, L. S. Yu, and W. J. Kolff. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Artif. Organs 13(2):148–154, 1989.

    CAS  PubMed  Google Scholar 

  5. Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108 (Suppl 1):II134–II139, 2003.

    Article  PubMed  Google Scholar 

  6. Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a medtronic parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.

    CAS  PubMed  Google Scholar 

  7. Ellis, J. T. and A. P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St Jude medical hemodynamic plus and regent bileaflet mechanical heart valves. J. Thorac Cardiovasc. Surg. 119(1):83–93, 2000.

    CAS  PubMed  Google Scholar 

  8. Ellis, J. T., B. R. Travis, and A. P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical Regent bileaflet mechanical heart valve. Ann. Biomed. Eng. 28(5):524–532, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Healy, T. M., J. T. Ellis, A. A. Fontaine, C. A. Jarrett, and A. P. Yoganathan. An automated method for analysis and visualization of laser Doppler velocimetry data. Ann. Biomed. Eng. 25(2):335–343, 1997.

    CAS  PubMed  Google Scholar 

  10. Herold, M., H. B. Lo, H. Reul, H. Muckter, K. Taguchi, M. Giesiepen, G. Birkle, G. Hollweg, G. Rau, and B. J. Messmer. The Helmoltz-institute-tri-leaflet-polyurethane-heart valve prosthesis: Design, manufacturing and first in-vitro and in vivo results, In: Polyurethanes in Biomedical Engineering II, edited by H. E. A. Planck. Elsevier Science Publishers, 1987. pp. 231–268.

  11. Hung, T. C., R. M. Hochmuth, J. H. Joist, and S. P. Sutera. Shear-induced aggregation and lysis of platelets. Trans. Am. Soc. Artif. Intern. Organs. 22:285–291, 1976.

    CAS  PubMed  Google Scholar 

  12. Jamieson, W. R., L. H. Burr, W. N. Jr., Anderson, J. B. Chambers, J. P. Gams, and C. M. Dowd, Prosthesis-related complications: First-year annual rates. J. Heart Valve Dis. 11(6):758–763, 2002.

    PubMed  Google Scholar 

  13. Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, H. B. Lo, S. Dabritz, C. Rosenbaum, A. Bitter, and K. Ziehe. Advances in design principle and fluid dynamics of a flexible polymeric heart valve. ASAIO Trans. 37(3):M451–M453, 1991.

    CAS  PubMed  Google Scholar 

  14. Lelah, M. D., and S. L. Cooper. Polyurethanes in Medicine. Boca Raton, Fla.: CRC Press, 1986, 225 p.

    Google Scholar 

  15. Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: Design, manufacture and evaluation. Biomaterials. 17(19):1857–1863, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Nemerson, Y., and V. T. Turitto. The effect of flow on hemostasis and thrombosis. Thromb. Haemost. 66(3):272–276, 1991.

    CAS  PubMed  Google Scholar 

  18. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.

    CAS  PubMed  Google Scholar 

  19. Sallam, A. M., and N. H. Hwang. Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology 21(6):783–797, 1984.

    CAS  PubMed  Google Scholar 

  20. Sandwell, D. T. Biharmonic spline interpolation of GEOS-3 and SEASAT Altimeter data. Geophys. Res. Lett. 2:139–142, 1987.

    Google Scholar 

  21. Simionescu, D. T., J. J. Lovekamp, and N. R. Vyavahare. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. J. Biomed. Mater. Res. 66A(4):755–763, 2003.

    CAS  Google Scholar 

  22. Slack, S. M., Y. Cui, and V. T. Turitto. The effects of flow on blood coagulation and thrombosis. Thromb. Haemost. 70(1):129–134, 1993.

    CAS  PubMed  Google Scholar 

  23. Slack, S. M., L. K. Jennings, and V. T. Turitto. Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation. Ann. Biomed. Eng. 22(6):653–659, 1994.

    CAS  PubMed  Google Scholar 

  24. Slack, S. M., and V. T. Turitto. Flow chambers and their standardization for use in studies of thrombosis. On behalf of the subcommittee on rheology of the scientific and standardization committee of the ISTH. Thromb. Haemost. 72(5):777–781, 1994.

    CAS  PubMed  Google Scholar 

  25. Spina, M., F. Ortolani, A. E. Messlemani, A. Gandaglia, J. Bujan, N. Garcia-Honduvilla, I. Vesely, G. Gerosa, D. Casarotto, L. Petrelli, and M. Marchini. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: Extracellular matrix structure, prevention from calcification, and cell repopulation features. J. Biomed. Mater. Res. 67A(4):1338–1350, 2003.

    CAS  Google Scholar 

  26. Tiederman, W. G., R. M. Privette, and W. M. Phillips. Cycle-to-cycle variation effects on turbulent shear stress measurment in pulsatile flows. Exp. Fluids. 6:265–272, 1988.

    Google Scholar 

  27. Turitto, V. T., and C. L. Hall. Mechanical factors affecting hemostasis and thrombosis. Thromb Res. 92(6 Suppl 2):S25–S31, 1998.

    CAS  PubMed  Google Scholar 

  28. Wheatley, D. J., L. Raco, G. M. Bernacca, I. Sim, P. R. Belcher, and J. S. Boyd. Polyurethane: Material for the next generation of heart valve prostheses? Eur. J. Cardiothorac. Surg. 17(4):440–448, 2000.

    CAS  PubMed  Google Scholar 

  29. Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O’Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs. 24(2):95–101, 2001.

    CAS  PubMed  Google Scholar 

  30. Woo, Y. R., F. P. Williams, and A. P. Yoganathan. In vitro fluid dynamic characteristics of the abiomed trileaflet heart valve prosthesis. J. Biomech. Eng. 105(4):338–345, 1983.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo, HL., Simon, H., Carberry, J. et al. A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves. Ann Biomed Eng 33, 429–443 (2005). https://doi.org/10.1007/s10439-005-2498-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2498-z

Keywords

Navigation