Skip to main content
Log in

Polarization of a Spherical Cell in a Nonuniform Extracellular Electric Field

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Polarization of cells by extracellular fields is relevant to neural stimulation, cardiac pacing, cardiac defibrillation, and electroporation. The electric field generated by an extracellular electrode may be nonuniform, and highly nonuniform fields are produced by microelectrodes and near the edges of larger electrodes. We solved analytically for the transmembrane voltage (Φm) generated in a spherical cell by a nonuniform extracellular field, as would arise from a point electrode. Φm reached its steady state value with a time constant much shorter than the membrane time constant in both uniform and nonuniform fields. The magnitude of Φm generated in the hemisphere of the cell toward the electrode was larger than in the other hemisphere in the nonuniform field, while symmetric polarization occurred in the uniform field. The transmembrane potential in oocytes stained with the voltage sensitive dye Di-8-ANEPPS was measured in a nonuniform field at three different electrode-to-cell distances. Asymmetric biphasic polarization and distance-dependent patterns of membrane voltage were observed in the measurements, as predicted from the analytical solution. These results highlight the differences in cell polarization in uniform and nonuniform electric fields, and these differences may impact excitation and poration by extracellular fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, K. W., and R. Plonsey. Development of a model for point source electrical fibre bundle stimulation. Med. Biol. Eng. Comput. 26:466–475, 1988.

    CAS  PubMed  Google Scholar 

  2. Baumgartner, W., L. Islas, and F. J. Sigworth. Two-microelectrode voltage clamp of Xenopus oocytes: Voltage errors and compensation for local current flow. Biophys. J. 77:1980–1991, 1999.

    CAS  PubMed  Google Scholar 

  3. Bernhardt, J., and H. Pauly. On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field. Biophysik 10:89–98, 1973.

    Article  CAS  PubMed  Google Scholar 

  4. Buitenweg, J. R., W. L. Rutten, and E. Marani. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng. 50:501–509, 2003.

    Article  PubMed  Google Scholar 

  5. Cartee, L. A., and R. Plonsey. The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. IEEE Tran.s Biomed. Eng. 39:76–85, 1992.

    Article  CAS  Google Scholar 

  6. Ehrenberg, B., D. L. Farkas, E. N. Fluhler, Z. Lojewska, and L. M. Loew. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys. J. 51:833–837, 1987.

    CAS  PubMed  Google Scholar 

  7. Eppich, H. M., R. Foxall, K. Gaynor, D. Dombkowski, N. Miura, T. Cheng, S. Silva-Arrieta, R. H. Evans, J. A. Mangano, F. I. Preffer, and D. T. Scadden. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat. Biotechnol. 18:882–887, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Foster, K. R., J. M. Bidinger, and D. O. Carpenter. The electrical resistivity of cytoplasm. Biophys. J. 16:991–1001, 1976.

    CAS  PubMed  Google Scholar 

  9. Garonzik, I. M., S. E. Hua, S. Ohara, and F. A. Lenz. Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov. Disord. 17(Suppl. 3):S135–S144, 2002.

    Article  PubMed  Google Scholar 

  10. Geddes, L. A., and L. E. Baker. The specific resistance of biological material–A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5:271–293, 1967.

    CAS  PubMed  Google Scholar 

  11. Gimsa, J., and D. Wachner. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 30:463–466, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Gimsa, J., and D. Wachner. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81:1888–1896, 2001.

    CAS  PubMed  Google Scholar 

  13. Grill, W. M., Jr. Modeling the effects of electric fields on nerve fibers: Influence of tissue electrical properties. IEEE Trans. Biomed. Eng. 46:918–928, 1999.

    Article  PubMed  Google Scholar 

  14. Grill, W. M., N. Bhadra, and B. Wang. Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats. Brain Res. 836:19–30, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Hibino, M., H. Itoh, and K. Kinosita, Jr. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, 1993.

    CAS  PubMed  Google Scholar 

  16. Holsheimer, J. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis. Exp. Brain Res. 67:402–410, 1987.

    Article  CAS  PubMed  Google Scholar 

  17. Jerry, R. A., A. S. Popel, and W. E. Brownell. Potential distribution for a spheroidal cell having a conductive membrane in an electric field. IEEE Trans. Biomed. Eng. 43:970–972, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Jezernik, S., M. Craggs, W. M. Grill, G. Creasey, and N. J. Rijkhoff. Electrical stimulation for the treatment of bladder dysfunction: Current status and future possibilities. Neurol. Res. 24:413–430, 2002.

    Article  PubMed  Google Scholar 

  19. Kanamori, H., and J. N. Siegel. Induction of erythroid gene expression by microcell fusion. Exp. Cell Res. 232:90–96, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Klee, M., and R. Plonsey. Stimulation of spheroidal cells–The role of cell shape. IEEE Trans. Biomed. Eng. 23:347–354, 1976.

    CAS  PubMed  Google Scholar 

  21. Kotnik, T., and D. Miklavcic. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–679, 2000.

    CAS  PubMed  Google Scholar 

  22. Kotnik, T., D. Miklavcic, and T. Slivnik. Time course of transmembrane voltage induced by time-varying electric field—A method for theoretical analysis and its application. Bioelectrochem. Bioenerg. 45:3–16, 1998.

    Article  CAS  Google Scholar 

  23. Krassowska, W. Field stimulation of cardiac fibers with random spatial structure. IEEE Trans. Biomed. Eng. 50:33–40, 2003.

    Article  PubMed  Google Scholar 

  24. Krassowska, W., and J. C. Neu. Response of a single cell to an external electric field. Biophys. J. 66:1768–1776, 1994.

    CAS  PubMed  Google Scholar 

  25. Leon, L. J., and F. A. Roberge. A model study of extracellular stimulation of cardiac cells. IEEE Trans. Biomed. Eng. 40:1307–1319, 1993.

    Article  CAS  PubMed  Google Scholar 

  26. Loew, L. M. Voltage-sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics (Suppl. 1):179–189, 1992.

  27. Marszalek, P., D. S. Liu, and T. Y. Tsong. Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 58:1053–1058, 1990.

    CAS  PubMed  Google Scholar 

  28. McIntyre, C. C., and W. M. Grill. Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann. Biomed. Eng. 29:227–235, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. McIntyre, C. C., and W. M. Grill. Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88:1592–1604, 2002.

    PubMed  Google Scholar 

  30. Mushahwar, V. K., D. F. Collins, and A. Prochazka. Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol. 163:422–429, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Mushahwar, V. K., D. M. Gillard, M. J. Gauthier, and A. Prochazka. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans. Neural Syst. Rehabil. Eng. 10:68–81, 2002.

    Article  PubMed  Google Scholar 

  32. Nicholson, P. W. Specific impedance of cerebral white matter. Exp. Neurol. 13:386–401, 1965.

    Article  CAS  PubMed  Google Scholar 

  33. Plonsey, R., and R. C. Barr. Bioelectricity: A Quantitative Approach, 2nd ed. New York: Kluwer Academic, 2000.

    Google Scholar 

  34. Pucihar, G., T. Kotnik, M. Kanduser, and D. Miklavcic. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Rall, W., I. Segev, J. Rinzel, and G. M. Shepherd.The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries. Cambridge, MA.: MIT Press, 1995.

    Google Scholar 

  36. Roth, B. J., and W. Krassowska. The induction of reentry in cardiac tissue. The missing link: How electric fields alter transmembrane potential. Chaos 8:204–220, 1998.

    Article  PubMed  Google Scholar 

  37. Schwan, H. P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209, 1957.

    CAS  PubMed  Google Scholar 

  38. Weaver, J. C. Electroporation theory. Concepts and mechanisms. Methods Mol. Biol. 47:1–26, 1995.

    CAS  PubMed  Google Scholar 

  39. Wu, J. Y., C. X. Falk, L. Cohen, Y. Tsau, and D. Zecevic. Optical measurement of action potential activity in invertebrate ganglia. Jpn. J. Physiol. 43(Suppl. 1):S21–S29, 1993.

    Article  PubMed  Google Scholar 

  40. Zhang, J., R. M. Davidson, M. D. Wei, and L. M. Loew. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys. J. 74:48–53, 1998.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill PhD..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.C., Grill, W.M. Polarization of a Spherical Cell in a Nonuniform Extracellular Electric Field. Ann Biomed Eng 33, 603–615 (2005). https://doi.org/10.1007/s10439-005-2397-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2397-3

Keywords

Navigation