Abstract
Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55° range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system.
Similar content being viewed by others
References
Agur, A. M., V. Ng-Thow-Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 16(4):285–293, 2003.
Alexander, R. M., and R. F. Ker. The architecture of leg muscles. In: Multiple Muscle Systems, edited by J. M. Winters and S. L. Woo. New York: Springer-Verlag, 1990, p. 568–577.
An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106(3):280–282, 1984.
Anderson, F. C., and M. G. Pandy. Dynamic optimization of human walking. J. Biomech. Eng. 123(5):381–390, 2001.
Anderson, F. C., and M. G. Pandy. Individual muscle contributions to support in normal walking. Gait Posture 17(2):159–169, 2003.
Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2):108–119, 2000.
Asakawa, D. S., K. S. Nayak, S. S. Blemker, S. L. Delp, J. M. Pauly, D. G. Nishimura, and G. E. Gold. Real-time imaging of skeletal muscle velocity. J. Magn. Reson. Imaging. 18(6):734–739, 2003.
Asakawa, D. S., G. P. Pappas, S. S. Blemker, J. E. Drace, and S. L. Delp. Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. Semin. Musculoskelet. Radiol. 7(4):287–295, 2003.
Besl, P. J., and N. D. McKay. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2):239–256, 1992.
Blemker, S. S., P. M. Pinsky, and S. L. Delp. A 3D Model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4):657–665, 2005.
Brand, R. A., and D. R. Pedersen. Computer modeling of surgery and a consideration of the mechanical effects of proximal femoral osteotomies. In: The Hip: Proceedings of the 12th Open Scientific Meeting of the Hip Society, 1984. St. Louis: C. V. Mosby.
Chao, E. Y.S., J. D. Lynch, and M. J. Vanderploeg. Simulation and animation of musculoskeletal joint system. J. Biomech. Eng. 115:562–568, 1993.
Criscione, J. C., A. S. Douglas, and W. C. Hunter. Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Sol. 49:871–897, 2001.
Delp, S. L., W. E. Hess, D. S. Hungerford, and L. C. Jones. Variation of rotation moment arms with hip flexion. J. Biomech. 32(5):493–501, 1999.
Delp, S. L., and J. P. Loan. A computational framework for simulation and analysis of human and animal movement. IEEE Comput. Sci. Eng. 2(5):46–55, 2000.
Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8):757–767, 1990.
Delp, S. L., D. A. Ringwelski, and N. C. Carroll. Transfer of the rectus femoris: Effects of transfer site on moment arms about the knee and hip. J. Biomech. 27(10):1201–1211, 1994.
Delp, S. L., K. Statler, and N. C. Carroll. Preserving plantar flexion strength after surgical treatment for contracture of the triceps surae: A computer simulation study. J. Orthop. Res. 13(1):96–104, 1995.
Delp, S. L., and F. E. Zajac. Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop. (284):247–259, 1992.
Dostal, W. F., G. L. Soderberg, and J. G. Andrews. Actions of hip muscles. Phys. Ther. 66(3):351–361, 1986.
Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23(1):91–95, 1990.
Garner, B. A., and M. G. Pandy. The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models. Comput. Methods Biomech. Biomed. Eng. 3(1):1–30, 2000.
Gielen, A. W., C. W. Oomens, P. H. Bovendeerd, T. Arts, and J. D. Janssen. A finite element approach for skeletal muscle using a distributed moment model of contraction. Comput. Methods Biomech. Biomed. Eng. 3(3):231–244, 2000.
Hallquist, J. O., G. L. Goudreau, and D. J. Bension. Sliding interfaces with contact–impact in large-scale Lagrangian computations. Int. J. Numer. Methods Eng. 51:107–137, 1985.
Herrmann, A. M., and S. L. Delp. Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. J. Hand. Surg. [Am]. 24(5):1083–1090, 1999.
Herzog, W., and H. E. ter Keurs. Force–length relation of in-vivo human rectus femoris muscles. Pflugers Arch. 411(6):642–647, 1988.
Hoy, M. G., F. E. Zajac, and M. E. Gordon. A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment–angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23(2):157–169, 1990.
Jenkyn, T. R., B. Koopman, P. Huijing, R. L. Lieber, and K. R. Kaufman. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Phys. Med. Biol. 47(22):4043–4061, 2002.
Jensen, R. H., and D. T. Davy. An investigation of muscle lines of action about the hip: A centroid line approach vs. the straight line approach. J. Biomech. 8:103–110, 1975.
Johansson, T., P. Meier, and R. Blickhan. A finite-element model for the mechanical analysis of skeletal muscles. J. Theor. Biol. 206(1):131–149, 2000.
Kojic, M., S. Mijailovic, and N. Zdravkovic. Modelling of muscle behaviour by the finite element method using Hill’s three-element model. Int. J. Numer. Method Eng. 43:941–953, 1998.
Lieber, R. L., and J. Friden. Intraoperative measurement and biomechanical modeling of the flexor carpi ulnaris-to-extensor carpi radialis longus tendon transfer. J. Biomech. Eng. 119(4):386–391, 1997.
Menegaldo, L. L., A. T. Fleury, and H. I. Weber. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J. Biomech. 37(9):1447–1453, 2004.
Muramatsu, T., T. Muraoka, Y. Kawakami, A. Shibayama, and T. Fukunaga. In vivo determination of fascicle curvature in contracting human skeletal muscles. J. Appl. Physiol. 92(1):129–134, 2002.
Murray, W. M., A. M. Bryden, K. L. Kilgore, and M. W. Keith. The influence of elbow position on the range of motion of the wrist following transfer of the brachioradialis to the extensor carpi radialis brevis tendon. J. Bone Joint Surg. Am. 84-A(12):2203–2210, 2002.
Nemeth, G., and H. Ohlsen. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J. Biomech. 18(2):129–140, 1985.
Nemeth, G., and H. Ohlsen. Moment arm lengths of trunk muscles to the lumbosacral joint obtained in vivo with computed tomography. Spine 11(2):158–160, 1986.
Piazza, S. J., and S. L. Delp. The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29(6):723–733, 1996.
Puso, M. A., B. N. Maker, R. M. Ferencz, and J. O. Hallquist. Nike3d: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics, 2002. Lawrence Livermore National Lab Technical Report.
Schmidt, D. J., A. S. Arnold, N. C. Carroll, and S. L. Delp. Length changes of the hamstrings and adductors resulting from derotational osteotomies of the femur. J. Orthop. Res. 17(2):279–285, 1999.
Schutte, L. M., S. W. Hayden, and J. R. Gage. Lengths of hamstrings and psoas muscles during crouch gait: Effects of femoral anteversion. J. Orthop. Res. 15(4):615–621, 1997.
Simo, J. C., and R. L. Taylor. Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical examples. Comp. Method Appl. Mech. Eng. 51:273–310, 1991.
Teran, J., S. S. Blemker, V. Ng-Thow Hing, and R. Fedkiw. Finite-volume method for simulation of muscle tissue. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), edited by D.B.A.M. Lin, 2003, p. 68–74.
Van der Helm, F. C., and R. Veenbaas. Modelling the mechanical effect of muscles with large attachment sites: Application to the shoulder mechanism. J. Biomech. 24(12):1151–1163, 1991.
Van der Helm, F. C., H. E. Veeger, G. M. Pronk, L. H. Van der Woude, and R. H. Rozendal. Geometry parameters for musculoskeletal modelling of the shoulder system. J. Biomech. 25(2):129–144, 1992.
Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comp. Method Appl. Mech. Eng. 135:107–128, 1996.
Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179:275–283, 1983.
Yucesoy, C. A., B. H. Koopman, P. A. Huijing, and H. J. Grootenboer. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model. J. Biomech. 35(9):1253–1262, 2002.
Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s10439-005-7385-0.
Rights and permissions
About this article
Cite this article
Blemker, S.S., Delp, S.L. Three-Dimensional Representation of Complex Muscle Architectures and Geometries. Ann Biomed Eng 33, 661–673 (2005). https://doi.org/10.1007/s10439-005-1433-7
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10439-005-1433-7