Skip to main content
Log in

Three-Dimensional Representation of Complex Muscle Architectures and Geometries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2005

Abstract

Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55° range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agur, A. M., V. Ng-Thow-Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 16(4):285–293, 2003.

    Article  Google Scholar 

  2. Alexander, R. M., and R. F. Ker. The architecture of leg muscles. In: Multiple Muscle Systems, edited by J. M. Winters and S. L. Woo. New York: Springer-Verlag, 1990, p. 568–577.

    Google Scholar 

  3. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106(3):280–282, 1984.

    Google Scholar 

  4. Anderson, F. C., and M. G. Pandy. Dynamic optimization of human walking. J. Biomech. Eng. 123(5):381–390, 2001.

    Article  Google Scholar 

  5. Anderson, F. C., and M. G. Pandy. Individual muscle contributions to support in normal walking. Gait Posture 17(2):159–169, 2003.

    Article  Google Scholar 

  6. Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2):108–119, 2000.

    Article  Google Scholar 

  7. Asakawa, D. S., K. S. Nayak, S. S. Blemker, S. L. Delp, J. M. Pauly, D. G. Nishimura, and G. E. Gold. Real-time imaging of skeletal muscle velocity. J. Magn. Reson. Imaging. 18(6):734–739, 2003.

    Article  Google Scholar 

  8. Asakawa, D. S., G. P. Pappas, S. S. Blemker, J. E. Drace, and S. L. Delp. Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. Semin. Musculoskelet. Radiol. 7(4):287–295, 2003.

    Google Scholar 

  9. Besl, P. J., and N. D. McKay. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2):239–256, 1992.

    Article  Google Scholar 

  10. Blemker, S. S., P. M. Pinsky, and S. L. Delp. A 3D Model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4):657–665, 2005.

    Article  Google Scholar 

  11. Brand, R. A., and D. R. Pedersen. Computer modeling of surgery and a consideration of the mechanical effects of proximal femoral osteotomies. In: The Hip: Proceedings of the 12th Open Scientific Meeting of the Hip Society, 1984. St. Louis: C. V. Mosby.

  12. Chao, E. Y.S., J. D. Lynch, and M. J. Vanderploeg. Simulation and animation of musculoskeletal joint system. J. Biomech. Eng. 115:562–568, 1993.

    Google Scholar 

  13. Criscione, J. C., A. S. Douglas, and W. C. Hunter. Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Sol. 49:871–897, 2001.

    MATH  Google Scholar 

  14. Delp, S. L., W. E. Hess, D. S. Hungerford, and L. C. Jones. Variation of rotation moment arms with hip flexion. J. Biomech. 32(5):493–501, 1999.

    Article  Google Scholar 

  15. Delp, S. L., and J. P. Loan. A computational framework for simulation and analysis of human and animal movement. IEEE Comput. Sci. Eng. 2(5):46–55, 2000.

    Google Scholar 

  16. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8):757–767, 1990.

    Article  Google Scholar 

  17. Delp, S. L., D. A. Ringwelski, and N. C. Carroll. Transfer of the rectus femoris: Effects of transfer site on moment arms about the knee and hip. J. Biomech. 27(10):1201–1211, 1994.

    Article  Google Scholar 

  18. Delp, S. L., K. Statler, and N. C. Carroll. Preserving plantar flexion strength after surgical treatment for contracture of the triceps surae: A computer simulation study. J. Orthop. Res. 13(1):96–104, 1995.

    Article  Google Scholar 

  19. Delp, S. L., and F. E. Zajac. Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop. (284):247–259, 1992.

  20. Dostal, W. F., G. L. Soderberg, and J. G. Andrews. Actions of hip muscles. Phys. Ther. 66(3):351–361, 1986.

    Google Scholar 

  21. Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23(1):91–95, 1990.

    Article  Google Scholar 

  22. Garner, B. A., and M. G. Pandy. The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models. Comput. Methods Biomech. Biomed. Eng. 3(1):1–30, 2000.

    Article  Google Scholar 

  23. Gielen, A. W., C. W. Oomens, P. H. Bovendeerd, T. Arts, and J. D. Janssen. A finite element approach for skeletal muscle using a distributed moment model of contraction. Comput. Methods Biomech. Biomed. Eng. 3(3):231–244, 2000.

    Google Scholar 

  24. Hallquist, J. O., G. L. Goudreau, and D. J. Bension. Sliding interfaces with contact–impact in large-scale Lagrangian computations. Int. J. Numer. Methods Eng. 51:107–137, 1985.

    MATH  Google Scholar 

  25. Herrmann, A. M., and S. L. Delp. Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. J. Hand. Surg. [Am]. 24(5):1083–1090, 1999.

    Article  Google Scholar 

  26. Herzog, W., and H. E. ter Keurs. Force–length relation of in-vivo human rectus femoris muscles. Pflugers Arch. 411(6):642–647, 1988.

    Google Scholar 

  27. Hoy, M. G., F. E. Zajac, and M. E. Gordon. A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment–angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23(2):157–169, 1990.

    Article  Google Scholar 

  28. Jenkyn, T. R., B. Koopman, P. Huijing, R. L. Lieber, and K. R. Kaufman. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Phys. Med. Biol. 47(22):4043–4061, 2002.

    Article  Google Scholar 

  29. Jensen, R. H., and D. T. Davy. An investigation of muscle lines of action about the hip: A centroid line approach vs. the straight line approach. J. Biomech. 8:103–110, 1975.

    Article  Google Scholar 

  30. Johansson, T., P. Meier, and R. Blickhan. A finite-element model for the mechanical analysis of skeletal muscles. J. Theor. Biol. 206(1):131–149, 2000.

    Article  Google Scholar 

  31. Kojic, M., S. Mijailovic, and N. Zdravkovic. Modelling of muscle behaviour by the finite element method using Hill’s three-element model. Int. J. Numer. Method Eng. 43:941–953, 1998.

    MATH  Google Scholar 

  32. Lieber, R. L., and J. Friden. Intraoperative measurement and biomechanical modeling of the flexor carpi ulnaris-to-extensor carpi radialis longus tendon transfer. J. Biomech. Eng. 119(4):386–391, 1997.

    Google Scholar 

  33. Menegaldo, L. L., A. T. Fleury, and H. I. Weber. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J. Biomech. 37(9):1447–1453, 2004.

    Article  Google Scholar 

  34. Muramatsu, T., T. Muraoka, Y. Kawakami, A. Shibayama, and T. Fukunaga. In vivo determination of fascicle curvature in contracting human skeletal muscles. J. Appl. Physiol. 92(1):129–134, 2002.

    Google Scholar 

  35. Murray, W. M., A. M. Bryden, K. L. Kilgore, and M. W. Keith. The influence of elbow position on the range of motion of the wrist following transfer of the brachioradialis to the extensor carpi radialis brevis tendon. J. Bone Joint Surg. Am. 84-A(12):2203–2210, 2002.

    Google Scholar 

  36. Nemeth, G., and H. Ohlsen. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J. Biomech. 18(2):129–140, 1985.

    Article  Google Scholar 

  37. Nemeth, G., and H. Ohlsen. Moment arm lengths of trunk muscles to the lumbosacral joint obtained in vivo with computed tomography. Spine 11(2):158–160, 1986.

    Google Scholar 

  38. Piazza, S. J., and S. L. Delp. The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29(6):723–733, 1996.

    Article  Google Scholar 

  39. Puso, M. A., B. N. Maker, R. M. Ferencz, and J. O. Hallquist. Nike3d: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics, 2002. Lawrence Livermore National Lab Technical Report.

  40. Schmidt, D. J., A. S. Arnold, N. C. Carroll, and S. L. Delp. Length changes of the hamstrings and adductors resulting from derotational osteotomies of the femur. J. Orthop. Res. 17(2):279–285, 1999.

    Article  Google Scholar 

  41. Schutte, L. M., S. W. Hayden, and J. R. Gage. Lengths of hamstrings and psoas muscles during crouch gait: Effects of femoral anteversion. J. Orthop. Res. 15(4):615–621, 1997.

    Article  Google Scholar 

  42. Simo, J. C., and R. L. Taylor. Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical examples. Comp. Method Appl. Mech. Eng. 51:273–310, 1991.

    MathSciNet  Google Scholar 

  43. Teran, J., S. S. Blemker, V. Ng-Thow Hing, and R. Fedkiw. Finite-volume method for simulation of muscle tissue. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), edited by D.B.A.M. Lin, 2003, p. 68–74.

  44. Van der Helm, F. C., and R. Veenbaas. Modelling the mechanical effect of muscles with large attachment sites: Application to the shoulder mechanism. J. Biomech. 24(12):1151–1163, 1991.

    Article  Google Scholar 

  45. Van der Helm, F. C., H. E. Veeger, G. M. Pronk, L. H. Van der Woude, and R. H. Rozendal. Geometry parameters for musculoskeletal modelling of the shoulder system. J. Biomech. 25(2):129–144, 1992.

    Article  Google Scholar 

  46. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comp. Method Appl. Mech. Eng. 135:107–128, 1996.

    MATH  Google Scholar 

  47. Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179:275–283, 1983.

    Google Scholar 

  48. Yucesoy, C. A., B. H. Koopman, P. A. Huijing, and H. J. Grootenboer. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model. J. Biomech. 35(9):1253–1262, 2002.

    Article  Google Scholar 

  49. Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Delp.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-005-7385-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blemker, S.S., Delp, S.L. Three-Dimensional Representation of Complex Muscle Architectures and Geometries. Ann Biomed Eng 33, 661–673 (2005). https://doi.org/10.1007/s10439-005-1433-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1433-7

Keywords

Navigation