Skip to main content
Log in

Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, pH, 2,3-DPG and Temperature Levels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2010

Abstract

New mathematical model equations for O2 and CO2 saturations of hemoglobin (S HbO 2 and S HbCO 2) are developed here from the equilibrium binding of O2 and CO2 with hemoglobin inside RBCs. They are in the form of an invertible Hill-type equation with the apparent Hill coefficients K HbO 2 and K HbCO 2 in the expressions for S HbO 2 and S HbCO 2 dependent on the levels of O2 and CO2 partial pressures (P O 2 and P CO 2), pH, 2,3-DPG concentration, and temperature in blood. The invertibility of these new equations allows P O 2 and P CO 2 to be computed efficiently from S HbO 2 and S HbCO 2 and vice-versa. The oxyhemoglobin (HbO2) and carbamino-hemoglobin (HbCO2) dissociation curves computed from these equations are in good agreement with the published experimental and theoretical curves in the literature. The model solutions describe that, at standard physiological conditions, the hemoglobin is about 97.2% saturated by O2 and the amino group of hemoglobin is about 13.1% saturated by CO2. The O2 and CO2 content in whole blood are also calculated here from the gas solubilities, hematocrits, and the new formulas for S HbO 2 and S HbCO 2. Because of the mathematical simplicity and invertibility, these new formulas can be conveniently used in the modeling of simultaneous transport and exchange of O2 and CO2 in the alveoli-blood and blood-tissue exchange systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adair, G. S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63:529–545, 1925.

    Google Scholar 

  2. Antonini, E., and M. Brunori. Hemoglobin and Myoglobin in their Reactions with Ligands. Amsterdam: North Holland, 1971, pp. 436.

  3. Austin, W. H., E. Lacombe., P. W. Rand, and M. Chatterjee. Solubility of carbon dioxide in serum from 15 to 38 C. J. Appl. Physiol. 18:301–304, 1963.

    Google Scholar 

  4. Bauer C., R. A. Klocke, D. Kamp., and R. E. Forster. Effect of 2,3-diphosphoglycerate and H#x0002B; on the reaction of O2 and hemoglobin. Am. J. Physiol. 224:838–847, 1973.

    Google Scholar 

  5. Baumann, R., H. Bartels., and C. Bauer. Blood oxygen transport. In: Handbook of Physiology, Sect 3: The Respiratory System. Vol IV. Gas Exchange, Bethesda, Maryland: American Physiological Society, 1987, pp. 147–172.

  6. Buerk, D. G. An evaluation of Easton’s paradigm for the oxyhemoglobin equilibrium curve. Adv. Exp. Med. Biol. 180:333–344, 1984.

    Google Scholar 

  7. Buerk D. G. and E. W. Bridges. A simplified algorithm for computing the variation in oxyhemoglobin saturation with pH, PCO2, T and DPG. Chem. Eng. Commun. 47:113–124, 1986.

    Google Scholar 

  8. Easton, D. M. Oxyhemoglobin dissociation curve as expo-exponential paradigm of asymmetric sigmoid function. J. Theor. Biol. 76:335–349, 1979.

    Google Scholar 

  9. Ellis, R. K. Letter to the editor: Determination of PCO2 from saturation. J. Appl. Physiol. 67:902, 1989.

    Google Scholar 

  10. Forster, R. E., H. P. Constantine, M. R. Craw, H. H. Rotman, and R. A. Klocke. Reaction of CO2 with human hemoglobin solution. J. Biol. Chem. 243:3317–3326, 1968.

    Google Scholar 

  11. Forster, R. E. Rate of reaction of CO2 with human hemoglobin. In: CO2: Chemical, Biochemical, and Physiological Aspects, edited by R. E. Forster, J. T. Edsall, A. B. Otis, and F. J. W. Roughton Washington, D.C.: Scientific and Technical Information Division, Office of Technology Utilization, NASA, 1969, pp. 55–59.

  12. Hedley-Whyte, J., and M. B. Laver. O2 solubility in blood and temperature correction factors for PCO2. J. Appl. Physiol. 19:901–906, 1964.

    Google Scholar 

  13. Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40:iv–vii, 1910.

    Google Scholar 

  14. Hill, E. P., G. G. Power, and L. D. Longo. A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen. Am. J. Physiol. Cell. Physiol. 224:283–299, 1973a.

    Google Scholar 

  15. Hill, E. P., G. P. Power, and L. D. Longo. Mathematical simulation of pulmonary O2 and CO2 exchange. Am. J. Physiol. Cell. Physiol. 224:904–917, 1973b.

    Google Scholar 

  16. Hill, E. P., G. G. Power, and L. D. Longo. Kinetics of O2 and CO2 exchange. In: Bioengineering Aspects of the Lung, edited by J. B. West New York: Marcel Dekker, 1977, pp. 459–514.

  17. Huang, N. S., and J. D. Hellums. A theoretical model for gas transport and acid/base regulation by blood flowing in microvessels. Microvasc. Res. 48:364–388, 1994.

    Google Scholar 

  18. Kelman, G. R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 21:1375–1376, 1966a.

    Google Scholar 

  19. Kelman, G. R. Calculation of certain exponents of cardio-pulmonary function using a digital computer. Respir. Physiol. 1:335–343, 1966b.

    Google Scholar 

  20. Kelman, G. R. Digital computer procedure for the conversion of PCO2 into blood CO2 content. Respir. Physiol. 3:111–115, 1967.

    Google Scholar 

  21. Kelman, G. R. Computer program for the production of O2–CO2 diagrams. Respir Physiol 4:260–269, 1968.

    Google Scholar 

  22. Klocke, R. A. Carbon dioxide transport. In: Handbook of Physiology, Sect. 3: The Respiratory System. Vol IV. Gas Exchange. Bethesda., Maryland: American Physiological Society, 1987, pp. 173–197.

  23. Li, Z., T. Yipintsoi., and J. B. Bassingthwaighte. Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann. Biomed. Eng. 25:604–619, 1997.

    Google Scholar 

  24. Margaria, R. A mathematical treatment of the blood dissociation curve for oxygen. Clin Chem 9:745–791, 1963.

    Google Scholar 

  25. Margaria, R., G. Torelli., and A. Pini. A possible mathematical definition of the O2 dissociation curve from blood or Hb solution. Exp. Med. Surg. 21:127–142, 1963.

    Google Scholar 

  26. O’Riordan, J. F., T. K. Goldstick, L. N. Vida, G. R. Honig, and J. T. Ernest. Modelling whole blood oxygen equilibirum: Comparison of nine different models fitted to normal human data. Adv. Exp. Med. Biol. 191:505–522, 1985.

    Google Scholar 

  27. Popel, A. S. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17:257–321, 1989.

    Google Scholar 

  28. Roughton, F. J. W. Transport of oxygen and carbon dioxide. In: Handbook of Physiology, Section 3: Respiration. Volume I. Washington., D.C.: American Physiological Society, 1964, pp. 767–825.

    Google Scholar 

  29. Roughton, F. J. W., Deland, E. C., Kernohan, J. C., and Severinghaus J. W. Some recent studies of the oxyhemoglobin dissociation curve of human blood under physiological conditions and the fitting of the Adair equation to the standard curve. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. Proceedings of the Alfred Benzon Symposium IV Held at the Premises of the Royal Danish Academy of Sciences and Letters, Copenhagen 17–22 May, 1971, edited by M. Rørth, and P. Astrup–Copenhagen: Munksgaard, 1972, pp. 73–81.

  30. Roughton, F. J. W., and Severinghaus J. W. Accurate determination of O2 dissociation curve of human blood above 98.7% saturation with data on O2 solubility in unmodified human blood from 0° to 37°C. J. Appl. Physiol. 35:861–869, 1973.

    Google Scholar 

  31. Salathe, E. P., Fayad, R., and Schaffer, S. W. Mathematical analysis of carbon dioxide transfer by blood. Math Biosci 57:109–153, 1981.

    Google Scholar 

  32. Severinghaus, J. W., Stupfel, M., and Bradley, A. F. Variations of serum carbonic acid pK with pH and temperature. J. Appl. Physiol. 9:197–200, 1956.

    Google Scholar 

  33. Severinghaus, J. W. Blood gas calculator. J. Appl. Physiol. 21:1108–1116, 1966.

    Google Scholar 

  34. Severinghaus, J. W. Simple, accurate equations for human blood O2 dissociation computations. J. Appl. Physiol.: Respirat Environ Exercise Physiol 46:599–602, 1979.

    Google Scholar 

  35. Severinghaus, J. W. Letter to the editor RE Determination of PO2 from saturation. J. Appl. Physiol. 67:902, 1989.

    Google Scholar 

  36. Sharan, M., and Singh, M. P. Equivalence between one step kinetics and Hill’s equation. J. Biomed. Eng. 6:297–301, 1984.

    Google Scholar 

  37. Siggaard-Andersen, O., Wimberley, P. D., Göthgen, I., and Siggard-Andersen, M. A mathematical model of the hemoglobin-oxygen dissociation curve of human blood and of the oxygen partial pressure as a function of temperature. Clin Chem 30:1646–1651, 1984.

    Google Scholar 

  38. Singh, M. P., Sharan, M., and Aminataei, A. Development of mathematical formulae for O2 and CO2 dissociation curves in the blood. IMA J Math Appl Med Biol 6:25–46, 1989.

    Google Scholar 

  39. Winslow, R. M., Swenberg, M.-L., Berger, R. L., Shrager, R. I., Luzzana, M., Samaja M., and Rossi-Bernardi, L. Oxygen equilibrium curve of normal human blood and its evaluation by Adair’s equation. J. Biol. Chem. 252:2331–2337, 1977.

    Google Scholar 

  40. Winslow, R. M., Samaja, M., Winslow, N. J., Rossi-Bernardi, L., and Shrager, R. I. Simulation of continuous blood O2 equilibrium over physiological pH, DPG, and PCO2 range. J. Appl. Physiol.: Respirat Environ Exercise Physiol 54:524–529, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Bassingthwaighte.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-010-9948-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, R.K., Bassingthwaighte, J.B. Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, pH, 2,3-DPG and Temperature Levels. Ann Biomed Eng 32, 1676–1693 (2004). https://doi.org/10.1007/s10439-004-7821-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7821-6

Navigation