Skip to main content
Log in

Measurement of Coronary Lumen Area Using an Impedance Catheter: Finite Element Model and in Vitro Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The measurement of coronary lumen cross-sectional area (CSA) is important for coronary physiology and cardiology. The general objective of this study is to develop an accurate and reproducible method to measure the lumen CSA of left anterior descending (LAD) artery using an impedance or conductance catheter. The conductance catheter technique is based on a cylindrical model of the chamber of interest. The first aim of this study was to validate the assumptions of the cylindrical model using a finite-element analysis (FEA) of the conductance catheter in the lumen of the vessel that takes into account the conductance of current through the vessel wall and surrounding tissue (parallel conductance, G p). The FEA was used to determine the heterogeneity of potential and electrical fields and to optimize the design of the catheter relative to the diameter of the vessel. An optimum relationship between vessel and catheter diameter was obtained based on FEA. The second aim was to validate the in vitro CSA of LAD artery obtained from the conductance catheter method using A-mode ultrasound (US). The present study offers a novel approach to correct for the G p that involves the injection of two solutions of NaCl (0.5% and 1.5%) with known conductivities directly into the lumen of the coronary artery in a porcine heart. In six hearts obtained from a slaughterhouse, we showed that the CSA and G p can be determined analytically from two Ohm’s law-type algebraic equations (cylindrical model) that account for the parallel conductance. The mean difference in diameter between the conductance catheter using the proposed two-injection method and US was −0.02. The root mean square error for the impedance measurements was 2.8% of the mean US diameter. The future application of this technique to the in vivo condition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baan, J., E. T. Van Der Velde, H. G. De Bruin, G. J. Smeenk, J. Koops., D. Temmerman., P. J. Senden, and B. Buis. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823, 1984.

    Google Scholar 

  2. Baan, J., T. T. A. Jong, P. L. M. Kerkhof, R. J. Moene, A. D. Van Dijk, E. T. Van der Velde, and J. Koops. Continuous stroke volume and cardiac output from intraventricular dimensions obtained with impedance catheter. Cardiovasc. Res. 15:328–334, 1981.

    Article  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310, 1986.

    Google Scholar 

  4. Chen, C. H., E. Nevo., B. Fetics., M. Nakayama., P. H. Pak, W. L. Maughan, and D. A. Kass. Comparison of continuous left ventricular volumes by transthoracic two-dimensional digital echo quantification with simultaneous conductance catheter measurements in patients with cardiac diseases. Am. J. Cardiol. 80(9):756–761, 1997.

    Google Scholar 

  5. Edgerton, R. H. Conductivity of sheared suspensions of ellipsoidal particles with application to blood flow. IEEE Trans. Biomed. Eng. 21(1):33–44, 1974.

    Google Scholar 

  6. Geddes, L. A. Who discovered the tetrapolar method? IEEE EMBS Mag. 15(8):133–134, 1996.

    Google Scholar 

  7. Georgakopoulos, D., W. A. Mitzner, C.-H. Chen., B. J. Byrne, H. D. Milliar, J. M. Hare, and D. A. Kass. In vivo murine left ventricular pressure–volume relations by miniaturized conductance micromanometry. Am. J. Physiol. 274:H1416–H1422, 1998 Heart Circ. Physiol. 43.

  8. Glantz, S. A., C. M. Olivera, R. F. Appleyard, R. J. Applegate, C. P. Cheng, and W. C. Little. Volume conductance catheter. Circulation 81:20–28, 1990.

    Google Scholar 

  9. Herrera, M. C., J. M. Olivera, and M. E. Valentinuzzi. Parallel conductance determination in cardiac volumetry using dilution manoeuvres: Theoretical analysis and practical implications. Med. Biol. Eng. Comput. 37:169–174, 1999.

    Google Scholar 

  10. Herrera, M. C., J. M. Olivera, and M. E. Valentinuzzi. Parallel conductance estimation by hypertonic dilution method with conductance catheter: Effects of the bolus concentration and temperature. IEEE Trans. Biomed. Eng. 46:830–837, 1999.

    Google Scholar 

  11. Hettrick, D. A., J. H. Battocletti, J. A. Ackmann, J. H. Linehan, and D. C. Warltier. In vitro and finite-element model investigation of the conductance technique for measurement of aortic segmental volume. Ann. Biomed. Eng. 24:675–684, 1996.

    Google Scholar 

  12. Hettrick, D. A., J. H. Battocletti, J. A. Ackmann, J. H. Linehan, and D. C. Warltier. Effect of physical parameters on the cylindrical model for volume measurement by conductance. Ann. Biomed. Eng. 25:126–134, 1997.

    Google Scholar 

  13. Hettrick, D. A., J. H. Battocletti, J. A. Ackmann, J. H. Linehan, and D. C. Warltier. In vivo measurement of real-time aortic segmental volume using the conductance catheter. Ann. Biomed. Eng. 26:431–440, 1998.

    Google Scholar 

  14. Ito, H., M. Takaki., H. Yamaguchi., H. Tachibana., and H. Suga. Left ventricular volumetric conductance catheter for rats. Am. J. Physiol. 270(4 Pt 2):H1509–H1514, 1996.

    Google Scholar 

  15. Kass, D. Clinical evaluation of left heart function by conductance catheter technique. Eur. Heart. J. 13(Suppl. E):57–64, 1992.

    Google Scholar 

  16. Kass, D. A., M. Midei., J. Brinker., and W. L. Maughan. Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure–volume relations in humans. Circulation 81(2):447–460, 1990.

    Google Scholar 

  17. Kassab, G. S. The coronary vasculature and its reconstruction. Ann. Biomed. Eng. 28:903–915, 2000.

    Google Scholar 

  18. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–H365, 1993 (Heart Circ. Physiol. 34).

    Google Scholar 

  19. Kornet, L., R. C. Jansen, E. J. Gussenhoven, M. R. Hardeman, A. P. G. Hoeks, and A. Versprille. Conductance methods for measurement of cross-sectional areas of the aorta. Ann. Biomed. Eng. 27:141–150, 1999.

    Google Scholar 

  20. Liebman, F. M. Electrical impedance pulse tracings from pulsatile blood flow in rigid tubes and volume restricted vascular beds: Theoretical explanations. Ann. (N.Y.) Acad. Sci. 259:437–551, 1974.

    Google Scholar 

  21. Nakajima, T., K. Kon., N. Maeda., K. Tsunekawa., and T. Shiga. Deformation response of red blood cells in oscillatory shear flow. Am. J. Physiol. 259:H1071–H1078, 1990.

    Google Scholar 

  22. Ninomiya, M., M. Fujii., M. Niwa., K. Sakamoto., and H. Kanai. Physical properties of flow blood. Biorheology 25(1–2):319–328.

  23. Peura, R. A., B. C. Penney, J. Arcuri., F. A. Anderson, and H. B. Wheeler. Influence of erythrocyte velocity on impedance plethysmographic measurements. Med. Biol. Eng. Comput. 16(2):147–154, 1978.

    Google Scholar 

  24. Plonsey, R., and D. G. Fleming. Bioelectric Phenomena. New York: McGraw-Hill, 1969, p. 380.

    Google Scholar 

  25. Sakamato, K., and H. Kanai. Electrical characteristics of flowing blood. IEEE Trans. Biomed. Eng. 26(12):686–695, 1979.

    Google Scholar 

  26. Schmid-Schonbein, H., and R. Wells. Fluid drop-like erythrocytes under shear. Science 16(8):288–291, 1969.

    Google Scholar 

  27. Skalak, R., and C. Zhu. Rheological aspects of red blood cell aggregation. Biorheology 27(3–4): 309–325, 1990.

    Google Scholar 

  28. Spinelli, J. C., and M. E. Valentinuzzi. Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter. Med. Biol. Eng. Comp. 24:460–464, 1986.

    Google Scholar 

  29. Steendijk, P., and J. Baan. Comparison of intravenous and pulmonary artery injections of hypertonic saline for the assessment of conductance catheter parallel conductance. Cardiovasc. Res. 46:82–89, 2000.

    Google Scholar 

  30. Steendijk, P., E. T. Van Der Velde, and J. Baan. Left ventricular stroke volume by single and dual excitation of conductance catheter in dogs. Am J. Physiol. 264:H2198–H2207, 1993 (Heart Circ Physiol 33).

    Google Scholar 

  31. Visser, K. R. Electric properties of flowing blood and impedance cardiography. Adv. Biomed. Eng. 17:463–473, 1989.

    Google Scholar 

  32. Vosser, K. R., R. Lamberts., H. H. M. Korsten, and W. G. Zijlstra. Observations on blood flow related electrical impedance changes in rigid tubes. Pflugers Arch. Ges. Physiol. Menschen Tiere. 366(2–3):289–291, 1976.

    Google Scholar 

  33. White, P. A., R. R. Chaturvedi, A. J. Bishop, C. I. Brookes, P. J. Oldershaw, and A. N. Redington. Does parallel conductance vary during systole in the human right ventricle? Cardiovasc. Res. 32(8):901–908, 1996.

    Google Scholar 

  34. Woodard, J. C., C. D. Bertram, and B. S. Gow. Effect of radial position on volume measurements using the conductance catheter. Med. Biol. Eng. Comput. 27:25–32, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassab, G.S., Lontis, E.R. & Gregersen, H. Measurement of Coronary Lumen Area Using an Impedance Catheter: Finite Element Model and in Vitro Validation. Ann Biomed Eng 32, 1642–1653 (2004). https://doi.org/10.1007/s10439-004-7817-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7817-2

Navigation