Skip to main content
Log in

Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A computational fluid dynamic (CFD) analysis is presented to describe local flow dynamics in both 3-D spatial and 4-D spatial and temporal domains from reconstructions of intravascular ultrasound (IVUS) and bi-plane angiographic fusion images. A left anterior descending (LAD) coronary artery segment geometry was accurately reconstructed and subsequently its motion was incorporated into the CFD model. The results indicate that the incorporation of motion had appreciable effects on blood flow patterns. The velocity profiles in the region of a stenosis and the circumferential distribution of the axial wall shear stress (WSS) patterns in the vessel are altered with the wall motion introduced in the simulation. The time-averaged axial WSS between simulations of steady flow and unsteady flow without arterial motion were comparable (−0.3 to 13.7 Pa in unsteady flow versus −0.2 to 10.1 Pa in steady flow) while the magnitudes decreased when motion was introduced (0.3–4.5 Pa). The arterial wall motion affects the time-mean WSS and the oscillatory shear index in the coronary vessel fluid dynamics and may provide more realistic predictions on the progression of atherosclerotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berne, R. M., and M. N. Levy. Cardiovascular Physiology, 6th ed. Mosby-Yearbook Inc.: St. Louis., MO, 1992.

    Google Scholar 

  2. Berthier, B., R. Bouzerar., and C. Legallais. Blood flow patterns in an anatomically realistic coronary vessel: Influence of three different reconstruction methods. J. Biomech. 35(10):1347–1356, 2002.

    Google Scholar 

  3. Bookstein, F. L. Principle warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intelligence 11(6):567–585, 1989.

    MATH  Google Scholar 

  4. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Proposal of a shear dependent mass transfer mechanism for atherogenesis. Clin. Sci. 40(2):5P, 1971.

    Google Scholar 

  5. Coskun, A. U., et al. Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter. Cardiovasc. Interv. 60(1):67–78, 2003.

    Google Scholar 

  6. Ding, Z., et al. Influence of the geometry of the left main coronary artery bifurcation on the distribution of sudanophilia in the daughter vessels. Arterioscler. Thromb. Vasc. Biol. 17(7):1356–1360, 1997.

    Google Scholar 

  7. Ding, Z., and M. H. Friedman. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis. J. Biomech. Eng. 122(5): 488–492, 2000.

    Google Scholar 

  8. Ding, Z., H. Zhu., and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30(4):419–429, 2002.

    Google Scholar 

  9. Foley, J. D., A. van Dam, S. K. FEiner, and J. F. Hughes. Computer Graphics: Principles and Practice. Addison-Wesley Publisher: Reading, MA, 1990.

    Google Scholar 

  10. Friedman, M. H., Z. Ding., G. M. Eaton, and W. A. Seed. Relationship between the dynamics of coronary arteries and coronary atherosclerosis. ASME BED Summer Bioengineering Conference. Vol. 42. ASME: Big Sky, Montana, 1999, pp. 49–50.

  11. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng. 118(1):74–82, 1996.

    Google Scholar 

  12. Helmlinger, G., et al. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113(2):123–131, 1991.

    Google Scholar 

  13. Karino, T., M. Motomiya., and H. L. Goldsmith. Flow patterns at the major T-junctions of the dog descending aorta. J. Biomech.23(6):537–548, 1990.

    Google Scholar 

  14. Ku, D. N., et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Google Scholar 

  15. Lai, Y. G., and A. J. Przekwas. A finite-volume method for fluid flow simulations with moving boundaries. Comput. Fluid Dynamics 2:19–40, 1994.

    Google Scholar 

  16. Lai, Y. G., L. Weber., and V. C. Patel. U2rans: A comprehensive hydraulic flow simulation code—its development and applications. 4th International Conference on Hydroinformatics. Iowa City, IA, 2000.

  17. Liu, Y., et al. Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images. Med. Eng. Phys. 23(8):583–595, 2001.

    Google Scholar 

  18. Moore, J. E., Jr., et al. Preliminary analysis of the effects of blood vessel movement on blood flow patterns in the coronary arteries. J. Biomech. Eng. 116(3):302–306, 1994.

    Google Scholar 

  19. Moore, J. E., Jr., E. S. Weydahl, and A. Santamarina. Frequency dependence of dynamic curvature effects on flow through coronary arteries. J. Biomech. Eng. 123(2):129–133, 2001.

    Google Scholar 

  20. Myers, J. G., J. A. Moore, M. Ohja., K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29:109–120, 2001.

    Google Scholar 

  21. Pao, Y. C., J. T. Lu, and E. L. Ritman. Bending and twisting of an in vivo coronary artery at a bifurcation. J. Biomech. 25:287–295, 1992.

    Google Scholar 

  22. Ramaswamy, Sharan D. Three and four dimensional hemodynamics in human coronary artery segments. Doctoral thesis. University of Iowa, 2003.

  23. Sabbah, H. N., F. J. Walburn, and P. D. Stein. Patterns of flow in the left coronary artery. J. Biomech. Eng. 106(3):272–279, 1984.

    Article  Google Scholar 

  24. Santamarina, A., et al. Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Ann. Biomed. Eng. 26(6):944–954, 1998.

    Google Scholar 

  25. Schilt, S., et al. The effects of time-varying curvature on velocity profiles in a model of the coronary arteries. J. Biomech. 29(4):469–474, 1996.

    Google Scholar 

  26. Sonka, M., et al. Lumen centerline detection in complex coronary angiograms. IEEE Trans. Biomed. Eng. 41(6):520–528, 1994.

    Google Scholar 

  27. Sonka, M., X. Zhang., M. Siebes., M. S. Bissing, S. C. DeJong, S. M. Collins, and C. R. McKay. Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Trans. Med. Imag. 14(4):719–732, 1995.

    Google Scholar 

  28. Stein, P. D., M. S. Hamid, K. Shivkumar., T. P. Davis, F. Khaja., and J. W. Henry. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am. J. Cardiol. 73:431–437, 1994.

    Google Scholar 

  29. Stone, P. H., et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108(4):438–444, 2003.

    Google Scholar 

  30. Taylor, C. A., T. J. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis. Ann. Biomed. Eng. 26(6):975–987, 1998.

    Google Scholar 

  31. Wahle, A., R. Medina., K. C. Braddy, J. M. Fox, T. M. H. Brennan, J. J. Lopez, J. D. Rossen, and M. Sonka. Impact of local vessel curvature on the circumferential plaquedistribution in coronary arteries. SPIE 5031-23, Medical Imaging 2003: Physiology and Function, Vol. 5031, edited by A. V. Clough, and A. A. Amini, pp. 204–213, 2003.

  32. Wahle, A., et al. Fusion of angiography and intravascular ultrasound in vivo: Establishing the absolute 3-D frame orientation. IEEE Trans. Biomed. Eng. 46(10):1176–1180, 1999.

    Google Scholar 

  33. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation. IEEE Trans. Med. Imag. 18(8):686–699, 1999

    Google Scholar 

  34. Zarins, C. K., and S. Glagov. Pathophysiology of human atherosclerosis. Vascular Surgery—Principles and Practice, edited by F. J. Veith, R. W. Hobson II, and R. A. Williams.New York: McGraw Hill Publishing Company, 1994, pp. 21–39.

    Google Scholar 

  35. Zeng, D., et al. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31(4):420–429, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Chandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramaswamy, S.D., Vigmostad, S.C., Wahle, A. et al. Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion. Ann Biomed Eng 32, 1628–1641 (2004). https://doi.org/10.1007/s10439-004-7816-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7816-3

Navigation