Skip to main content
Log in

Fast Measurements of Flow through Mitral Regurgitant Orifices with Magnetic Resonance Phase Velocity Mapping

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic-resonance (MR) phase velocity mapping (PVM) shows promise in measuring the mitral regurgitant volume. However, in its conventional nonsegmented form, MR-PVM is slow and impractical for clinical use. The aim of this study was to evaluate the accuracy of rapid, segmented k-spaceMR-PVM in quantifying the mitral regurgitant flow through a control volume (CV) method. Two segmented MR-PVM schemes, one with seven (seg-7) and one with nine (seg-9) lines per segment, were evaluated in acrylic regurgitant mitral valve models under steady and pulsatile flow. A nonsegmented (nonseg) MR-PVM acquisition was also performed for reference. The segmented acquisitions were considerably faster (<10 min) than the nonsegmented (>45 min). The regurgitant flow rates and volumes measured with segmented MR-PVM agreed closely with those measured with nonsegmented MR-PVM (differences <5%, p>0.05), when the CV was large enough to exclude the region of flow acceleration and aliasing from its boundaries. The regurgitant orifice shape (circular vs. slit-like) and the presence of aortic outflow did not significantly affect the accuracy of the results under both steady and pulsatile flow (p>0.05). This study shows that segmented k-space MR-PVM canaccurately quantify the flow through regurgitant orifices using the CV method and demonstrates great clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogren, H. G., and M. H. Buonocore. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J. Magn. Reson. Imag. 4:119–130, 1994.

    Google Scholar 

  2. Bryant, D. J., J. A. Payne, D. N. Firmin, and D. B. Longmore. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J. Comp. Assist. Tomogr. 8:588–593, 1984.

    Google Scholar 

  3. Cape, E. G., Y. H. Kim, R. S. Heinrich, R. Y. Grimes, E. Muralidharan., J. D. Broder, E. Schwammenthal., A. P. Yoganathan, and R. A. Levine. Cardiac motion can alter proximal isovelocity surface-area calculations of regurgitant flow. J. Am. Col. Cardiol. 22:1730–1737, 1993.

    Google Scholar 

  4. Chatzimavroudis, G. P., P. G. Walker, J. N. Oshinski, R. H. Franch, R. I. Pettigrew, and A. P. Yoganathan. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn. Reson. Med. 37:545–551, 1997.

    Google Scholar 

  5. Chatzimavroudis, G. P., J. N. Oshinski, R. I. Pettigrew, P. G. Walker, R. H. Franch, and A. P. Yoganathan. Quantification of mitral regurgitation with magnetic resonance phase velocity mapping using a control volume method. J. Magn. Reson. Imag. 8:577–582, 1998.

    Google Scholar 

  6. Chatzimavroudis, G. P., H. Zhang., S. S. Halliburton, J. R. Moore, O. P. Simonetti, P. R. Schvartzman, A. E. Stillman, and R. D. White. Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J. Magn. Reson. Imag. 17:65–71, 2003.

    Google Scholar 

  7. Chatzimavroudis, G. P., J. N. Oshinski, R. H. Franch, P. G. Walker, A. P. Yoganathan, and R. I. Pettigrew. Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J. Cardiovasc. Magn. Reson. 3:11–19, 2001.

    Google Scholar 

  8. Croft, C. H., K. Lipscomb., K. Mathis., B. G. Firth, P. Nicod., G. Tilton., M. D. Winniford, and L. D. Hillis. Limitations of qualitative angiographic grading in aortic or mitral regurgitation. Am. J. Cardiol. 53:1593–1598, 1984.

    Google Scholar 

  9. Dulce, M. C., G. H. Mostbeck, M. O’Sullivan, M. Cheitlin., G. R. Caputo, and C. B. Higgins. Severity of aortic regurgitation: Interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology 185:235–240, 1992.

    Google Scholar 

  10. Frayne, R., D. A. Steinman, C. R. Ethier, and B. K. Rutt. Accuracy of MR phase contrast velocity measurements for unsteady flow. J. Magn. Reson. Imag. 5:428–431, 1995.

    Google Scholar 

  11. Hopmeyer, J., A. A. Fontaine, S. Yang., R. A. Levine, and A. P. Yoganathan. The effect of aortic outflow on the quantification of mitral regurgitation by the flow convergence method. J. Am. Soc. Echo. 9:44–57, 1996.

    Google Scholar 

  12. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic13 arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Google Scholar 

  13. Klipstein, R. H., D. N. Firmin, S. R. Underwood, R. S. Rees, and D. B. Longmore. Blood flow patterns in the human aorta studied by magnetic resonance. Br. Heart J. 58:316–323, 1987.

    Google Scholar 

  14. Kondo, C., G. R. Caputo, R. Semelka., E. Foster., A. Shimakawa., and C. B. Higgins. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: In-vitro and in-vivo validation. Am. J. Roentgenol. 157:9–16, 1991.

    Google Scholar 

  15. Kraft, K. A., D. Y. Fei, and P. P. Fatouros. Quantitative phase-velocity MR imaging of in-plane laminar flow: Effect of fluid velocity, vessel diameter, and slice thickness. Med. Phys. 19:79–85, 1992.

    Google Scholar 

  16. McKinnon, G. C., J. F. Debatin, D. R. Wetter, and G. K. Von Schulthess. Interleaved echo planar flow quantitation. Magn. Reson. Med. 32:263–267, 1994.

    Google Scholar 

  17. Meier, D., S. Maier., and P. Bosiger. Quantitative flow measurements on phantoms and on blood vessels with MR. Magn. Reson. Med. 8:25–34, 1988.

    Google Scholar 

  18. Mohiaddin, R. H., S. L. Wann, R. Underwood., D. N. Firmin, S. Rees., and D. B. Longmore. Vena caval flow: Assessment with cine MR velocity mapping. Radiology 177:537–541, 1990.

    Google Scholar 

  19. Moran, P. R. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn. Reson. Imag. 1:197–203, 1982.

    Google Scholar 

  20. Pelc, L. R., N. J. Pelc, S. C. Rayhill, L. J. Castro, G. H. Glover, R. J. Herfkens, D. C. Miller, and R. B. Jeffrey. Arterial and venous blood flow: Noninvasive quantification with MR imaging. Radiology 185:809–812, 1992.

    Google Scholar 

  21. Perry, G. J., F. Helmcke., N. C. Nanda, C. Byard., and B. Soto. Evaluation of aortic insufficiency by Doppler color flow mapping. J. Am. Coll. Cardiol. 9:952–959, 1987.

    Article  Google Scholar 

  22. Recusani, F., G. S. Bargiggia, A. P. Yoganathan, A. Raisaro., L. M. Valdes-Cruz, H. W. Sung, C. Bertucci., M. Gallati., V. A. Moises, I. A. Simpson, L. Tronconi., and D. J. Sahn. A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice. An in vitro Study Circulation 83:594–604, 1991.

    Google Scholar 

  23. Sechtem, U., P. W. Pflugfelder, M. M. Cassidy, R. D. White, M. D. Cheitlin, N. B. Schiller, and C. B. Higgins. Mitral or aortic regurgitation: Quantification of regurgitant volumes with cine MR imaging. Radiology 167:425–430, 1988.

    Google Scholar 

  24. Suzuki, J., G. R. Caputo, C. Kondo., and C. B. Higgins. Cine MR imaging of valvular heart disease: Display and imaging parameters affect the size of the signal void caused by valvular regurgitation. Am. J. Roentgenol. 155:723–727, 1990.

    Google Scholar 

  25. Thomsen, C., M. Cortsen., L. Sondergaard., O. Henriksen., and F. Stahlberg. A segmented k-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding. J. Magn. Reson. Imag. 5:393–401, 1995.

    Google Scholar 

  26. Underwood, S. R., D. N. Firmin, R. H. Klipstein, R. S. Rees, and D. B. Longmore. Magnetic resonance velocity mapping: Clinical application of a new technique. Br. Heart J. 57:404–412, 1987.

    Google Scholar 

  27. Veyrat, C., A. Ameur., C. Gourtchiglouian., A. Lessana., G. Abitbol., and D. Kalmanson. Calculation of pulsed Doppler left ventricular outflow tract regurgitant index for grading the severity of aortic regurgitation. Am. Heart J. 108:507–515, 1984.

    Google Scholar 

  28. Walker, P. G., S. Oyre., E. M. Pedersen, K. Houlind., F. S. Guenet, and A. P. Yoganathan. A new control volume method for calculating valvular regurgitation. Circulation 92:579–586, 1995.

    Google Scholar 

  29. Walker, P. G., K. Houlind., C. Djurhuus., W. Y. Kim, and E. M. Pedersen. Motion correction for the quantification of mitral regurgitation using the control volume method. Magn. Reson. Med. 43:726–733, 2000.

    Google Scholar 

  30. Zhang, H., S. S. Halliburton, J. R. Moore, O. P. Simonetti, P. R. Schvartzman, R. D. White, and G. P. Chatzimavroudis. Ultra-fast flow quantification with segmented k-space magnetic resonance phase velocity mapping. Ann. Biomed. Eng. 30:120–128, 2002.

    Google Scholar 

  31. Zhang, H., S. S. Halliburton, J. R. Moore, O. P. Simonetti, R. D. White, and G. P. Chatzimavroudis. Evaluation of the accuracy of in-plane velocity measurements with segmented k-space magnetic resonance phase velocity mapping. BMES Annual Meeting, Houston, TX, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Chatzimavroudis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Halliburton, S.S., White, R.D. et al. Fast Measurements of Flow through Mitral Regurgitant Orifices with Magnetic Resonance Phase Velocity Mapping. Ann Biomed Eng 32, 1618–1627 (2004). https://doi.org/10.1007/s10439-004-7815-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7815-4

Navigation