Skip to main content
Log in

Ultrasonic and Thermal Inactivation of Catalases from Bovine Liver, the Methylotrophic Yeast Pichia pastoris, and the Fungus Penicillium piceum

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The kinetics of inactivation of catalases from bovine liver (CAT), the fungus Penicillium piceum (CAT1), and the methylotrophic yeast Pichia pastoris (CAT2) was studied in phosphate buffer (pH 5.5 or 7.4) at 45 and 50°C or under the conditions of exposure to low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2). The processes were characterized by effective first-order rate constants (s−1): k in (total inactivation), k *in (thermal inactivation), and k *in (us) (ultrasonic inactivation). The values of k in and k *in increased in the following order: CAT1 < CAT < CAT2. Circular dichroic spectra of the enzyme solutions were recorded in the course of inactivation by high temperatures (45 and 50°C ) and LFUS, and the contents of secondary structures were calculated. Processes of thermal and ultrasonic inactivation of catalases were associated with a decrease in the content of α helices and an increase in that of antiparallel β structures and irregular regions (CAT1 < CAT < CAT2). We conclude that the enzymes exhibit the following rank order of resistance: CAT1 > CAT > CAT2. Judging from the characteristics of CAT1, it appears to be an optimum component for antioxidant enzyme complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT, CAT1, and CAT2 are catalases from bovine liver:

the fungus Penicillium piceum, and the methylotrophic yeast Pichia pastoris, respectively

HFUS:

high-frequency ultrasound (2.64 MHz, 1 W/cm2)

LFUS:

low-frequency ultrasound (27 kHz, 60 W/cm2)

REFERENCES

  1. Maksimenko, A.V., Usp. Sovrem. Biol., 1993, vol. 113, no.3, pp. 351–365.

    CAS  Google Scholar 

  2. Maksimenko, A.V., Grigor'eva, E.L., Morozkin, A.D., Tishchenko, E.G., Minkovskii, E.B., and Torchilin, V.P., Biokhimiya, 1991, vol. 56, no.7, pp. 1330–1336.

    CAS  Google Scholar 

  3. Miroshnichenko, O.S., Biopolim. Kletka, 1992, vol. 8, no.6, pp. 3–25.

    CAS  Google Scholar 

  4. Eryomin, A.N., Litvinchuk, A.V., and Metelitza, D.I., Biokhimiya, 1996, vol. 61, no.4, pp. 664–679.

    Google Scholar 

  5. Eryomin, A.N. and Metelitza, D.I., Biokhimiya, 1996, vol. 61, no.9, pp. 1672–1686.

    Google Scholar 

  6. Eryomin, A.N. and Metelitza, D.I., Prikl. Biokhim. Mikrobiol., 1997, vol. 33, no.4, pp. 367–376.

    Google Scholar 

  7. Prist, F., Vnekletochnye fermenty mikroorganizmov (Extracellular Enzymes of Microorganisms), Moscow: Mir, 1987.

    Google Scholar 

  8. Potapovich, M.V., Eryomin, A.N., Artsukevich, I.M., Chernikevich, I.P., and Metelitza, D.I., Biokhimiya, 2001, vol. 66, no.6, pp. 797–810.

    Google Scholar 

  9. Eryomin, A.N., Mikhailova, R.V., and Metelitza, D.I., Prikl. Biokhim. Mikrobiol., 2000, vol. 36, no.3, pp. 261–266.

    Google Scholar 

  10. Eryomin, A.N., Metelitza, D.I., Moroz, I.V., Pavlovskaya, Zh.I., and Mikhailova, R.V., Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no.4, pp. 374–380.

    Google Scholar 

  11. Potapovich, M.V., Eryomin, A.N., and Metelitza, D.I., Prikl. Biokhim. Mikrobiol., 2003, vol. 39, no.2, pp. 160–166.

    PubMed  CAS  Google Scholar 

  12. Potapovich, M.V., Adzerikho, I.E., Eryomin, A.N., and Metelitza, D.I., Zh. Fiz. Khim., 2003, vol. 77, no.2, pp. 355–363.

    CAS  Google Scholar 

  13. Potapovich, M.V., Adzerikho, I.E., Eryomin, A.N., and Metelitza, D.I., Vestsi NAN Belarusi, Ser. Khim., 2003, no. 2, pp. 57–63.

  14. Spravochnik khimika (A Handbook of Chemist), Nikol'skii, B.P., Ed., Leningrad: Khimiya, 1967, vol. 4, p. 919.

    Google Scholar 

  15. Miyahara, T., Takeda, A., Hashimori, A., and Samejima, T., J. Biochem., 1978, vol. 84, pp. 1267–1276.

    PubMed  CAS  Google Scholar 

  16. Fraifel'der, D., Fizicheskaya biokhimiya (Physical Biochemisty), Moscow: Mir, 1980.

    Google Scholar 

  17. Bohm, G., CD Spectra Deconvolution. CDNN 2.1, http://bioinformatics.biochemtech.unihalle.de/cdnn

  18. Metelitza, D.I. and Eryomin, A.N., Usp. Khim., 1987, vol. 56, no.11, pp. 1921–1948.

    Google Scholar 

  19. Poltorak, O.M. and Chukhrai, E.S., in Itogi Nauki Tekhniki, Ser.: Biotekhnologiya, vol. 5, Moscow: VINITI, 1986, pp. 50–86.

    Google Scholar 

  20. Poltorak, O.M., Chukhrai, E.S., and Torshin, I.Yu., Biokhimiya, 1998, vol. 63, no.3, pp. 360–369.

    Google Scholar 

  21. Gorbunoff, M.J., Anal. Biochem., 1984, vol. 136, no.2, pp. 425–432.

    PubMed  CAS  Google Scholar 

  22. Tarun, E.I., Adzerikho, I.E., and Metelitza, D.I., Vestsi NAN Belarusi, Ser.: Khim., 2002, no. 4, pp. 72–77.

  23. Metelitza, D.I. and Eryomin, A.N., Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no.3, pp. 312–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 6, 2005, pp. 603–611.

Original Russian Text Copyright © 2005 by Potapovich, Eryomin, Metelitza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapovich, M.V., Eryomin, A.N. & Metelitza, D.I. Ultrasonic and Thermal Inactivation of Catalases from Bovine Liver, the Methylotrophic Yeast Pichia pastoris, and the Fungus Penicillium piceum . Appl Biochem Microbiol 41, 529–537 (2005). https://doi.org/10.1007/s10438-005-0096-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10438-005-0096-3

Keywords

Navigation