Skip to main content
Log in

Properties of nitrate reductase from Fusarium oxysporum 11dn1 fungi grown under anaerobic conditions

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Production of nitrate reductase was studied in 15 species of microscopic fungi grown on a nitrate-containing medium. Experiments were performed with Fusarium oxysporum 11dn1, a fungus capable of producing nitrous oxide as the end product of denitrification. Moreover, a shift from aerobic to anaerobic conditions of growth was accompanied by a sharp increase in the activity of nitrate reductase. Studies of nitrate reductase from the mycelium of Fusarium oxysporum 11dn1, grown under aerobic and anaerobic conditions, showed that this enzyme belongs to molybdenum-containing nitrate reductases. The enzymes under study differed in the molecular weight, temperature optimum, and other properties. Nitrate reductase from the mycelium grown under aerobic conditions was shown to belong to the class of assimilatory enzymes. However, nitrate reductase from the mycelium grown anaerobically had a dissimilatory function. An increase in the activity of dissimilatory nitrate reductase, observed under anaerobic conditions, was associated with de novo synthesis of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPB:

bromophenol blue

MV:

methyl viologen

NRase:

nitrate reductase

NIRase:

nitrite reductase

NORase:

nitric oxide reductase

PMSF:

phenylmethylsulfonyl fluoride

REFERENCES

  1. Zumft, W.G., Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 553–616.

    Google Scholar 

  2. Philippot, L. and Hojberg, O., Biochim. Biophys. Acta, 1999, vol. 1446, pp. 1–23.

    CAS  PubMed  Google Scholar 

  3. Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R., and Castillo, F., J. Bacteriol., 1999, vol. 181, pp. 6573–6584.

    CAS  PubMed  Google Scholar 

  4. Zvyagil’skaya, R.A., Vartapetyan, B.B., and L’vov, N.P., Prikl. Biokhim. Mikrobiol., 1996, vol. 38, no.2, pp. 179–184.

    Google Scholar 

  5. Tsuruta, S., Takaya, N., Zhang, L., Shoun, H., Kimura, K., Hamamoto, M., and Nakase, T., FEMS Microbiol. Lett., 1998, vol. 168, pp. 105–110.

    Article  CAS  PubMed  Google Scholar 

  6. Takaya, N., J. Biosci. Bioeng, 2002, vol. 94, pp. 506–510.

    CAS  Google Scholar 

  7. Zhou, Z., Takaya, N., Sakairi, M.A.C., and Shoun, H., Arch. Microbiol., 2001, vol. 175, pp. 19–25.

    Article  CAS  PubMed  Google Scholar 

  8. Shown, H. and Tanimoto, T., J. Biol. Chem., 1991, vol. 266, pp. 11078–11082.

    PubMed  Google Scholar 

  9. Shown, H., Kim, D.H., Uchiyama, H., and Sugiyama, J., FEMS Microbiol. Letts., 1992, vol. 73, pp. 277–281.

    Article  Google Scholar 

  10. Shown, H., Kim, D.H., Baba, I., Takaya, N., and Matsuo, M., J. Bacteriol., 1998, vol. 180, pp. 4413–4415.

    PubMed  Google Scholar 

  11. Kobayashi, M. and Shoun, H., J. Biol. Chem., 1995, vol. 270, pp. 4146–4151.

    Article  CAS  PubMed  Google Scholar 

  12. Kizawa, H., Tomura, D., Oda, M., Fukamizu, A., Hoshiro, T., Gotoh, O., Yasui, T., and Shoun, H., J. Biol. Chem., 1991, vol. 266, pp. 10632–10637.

    CAS  PubMed  Google Scholar 

  13. Nakahara, K. and Shoun, H., J. Biochem., 1996, vol. 120, pp. 1082–1087.

    CAS  PubMed  Google Scholar 

  14. Takaya, N., Suzuk, S., Kuwazaki, S., Shoun, H., Maruo, F., Yamaguchi, M., and Takeo, K., Arch. Biochem. Biophys., 1999, vol. 372, pp. 340–346.

    Article  CAS  PubMed  Google Scholar 

  15. Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K., and Shoun, H., J. Biol. Chem., 1993, vol. 268, pp. 8350–8355.

    CAS  PubMed  Google Scholar 

  16. Kurakov, A.V., Pakhnenko, O.A., Kostina, N.V., and Umarov, M.M., Pochvovedenie, 1997, vol. 30, pp. 1344–1349.

    Google Scholar 

  17. Kurakov, A.V., Nosikov, A.N., Skrynnikova, E.V., and L’vov, N.P., Curr. Microbiol., 2000, vol. 41, pp. 114–119.

    Article  CAS  PubMed  Google Scholar 

  18. Uchimura, H., Enjoji, H., Seki, T., Taguchi, A., Takaya, N., and Shoun, H., J. Biochem., 2002, vol. 131, pp. 579–586.

    CAS  PubMed  Google Scholar 

  19. Takaya, N., Kuwazaki, S., Adachi, Y., Suzuki, S., Kikuchi, T., Nakamura, H., Shiro, Y., and Shoun, H., J. Biochem., 2003, vol. 133, pp. 461–465.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford, M.A., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    CAS  PubMed  Google Scholar 

  21. Hawkes, T.R. and Bray, R.C., Biochem. J., 1984, vol. 219, pp. 481–493.

    CAS  PubMed  Google Scholar 

  22. Losada, M., J. Mol. Catalysis, 1975, vol. 76, pp. 245–254.

    Google Scholar 

  23. Minagawa, H. and Yoshimoto, A., Argon. Biol. Chem., 1984, vol. 48, pp. 557–559.

    CAS  Google Scholar 

  24. Horner, R.D., Biochim. Biophys. Acta, 1983, vol. 744, pp. 7–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 292–297.

Original Russian Text Copyright © 2005 by Morozkina, Kurakov, Nosikov, Sapova, L’vov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozkina, E.V., Kurakov, A.V., Nosikov, A.N. et al. Properties of nitrate reductase from Fusarium oxysporum 11dn1 fungi grown under anaerobic conditions. Appl Biochem Microbiol 41, 254–258 (2005). https://doi.org/10.1007/s10438-005-0043-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10438-005-0043-3

Keywords

Navigation