Skip to main content
Log in

Activation of peroxidase-catalyzed oxidation of chromogenic substrates by tetrazole and its 5-substituted derivatives

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Peroxidase-catalyzed oxidation of 2,2-azino-di(3-ethyl-benzthiazolydine-6-sulfonic acid) (ABTS) and 3,3′,5,5′-tetramethylbenzidine (TMB) is activated by tetrazole and its 5-substituted derivatives—5-amino-(AmT), 5-methyl-(MeT), 5-phenyl-(PhT), and 5-CF3-(CF3-T) tetrazoles. In phosphate-citrate or phosphate buffer (pH 6.4 or 7.2; 20°C), the activating effect of tetrazoles on TMB and ABTS oxidation decreased in the series AmT > MeT > T > PhT > CF3-T and T > AmT > MeT > PhT, respectively. The coefficient (degree) of activation (α), expressed in M−1, determined for both substrates and all activators, depended on substrate type, buffer nature, and pH (it increased as pH increased from 6.4 to 7.2). For TMB oxidation, good correlation between logα and the Hammet constants σmeta for m-substituents in the benzene series NH2, CH3, C6H5, and CF3 was found. It is suggested that AmT, MeT, and T can be used as activators of peroxidase-catalyzed oxidation of TMB and ABTS in enzyme immunoassay and designing peroxidase-based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Activator

ABTS:

diammonium salt of 2,2-azino-di(3-ethyl-benzthiazolydine-6-sulfonic acid)

TMB:

3,3′,5,5′-tetramethylbenzidine

T:

tetrazole

AmT:

5-aminotetrazole

MeT:

5-methyltetrazole

PhT:

5-phenyltetrazole

CF3-T:

5-CF3-tetrazole

HP:

horseradish peroxidase

PB:

0.06 M phosphate buffer

PCB:

0.06 M phosphate-citrate buffer

α:

coefficient (degree) of activation of peroxidase-catalyzed oxidation of ABTS and TMB

σmeta :

the Hammet constant for meta-substituents in the benzene series

REFERENCES

  1. Polac, J.M. and Van Noorden, S., An Introduction to Immunocytochemistry: Current Techniques and Problems, Oxford: Oxford Univ., 1984. Translated under the title Vvedenie v immunotsitokhimiyu: sovremenye metody i problemy, Moscow: Mir, 1987.

    Google Scholar 

  2. Egorov, A.M., Osipov, A.P., Dzantiev, B.B., and Gavrilova, E.M., Teoriya i praktika immunofermentnogo analiza (Theory and Practice of the Enzyme Immunoassay), Moscow: Vysshaya Shkola, 1991.

    Google Scholar 

  3. Rubtsova, M.Yu., Kovba, G.V., and Egorov, A.M., Biosensor and Bioelectronics, 1998, vol. 13, no.1, pp. 75–85.

    Google Scholar 

  4. Metelitza, D.I. and Karasyova, E.I., Biokhimiya, 2002, vol. 67, no.9, pp. 1265–1272.

    Google Scholar 

  5. Karasyova, E.I., Naumchik, I.V., and Metelitza, D.I., Bioorg. Khim., 2003, vol. 29, no.1, pp. 49–56.

    Google Scholar 

  6. Karasyova, E.I., Naumchik, I.V., and Metelitza, D.I., Biokhimiya, 2003, vol. 68, no.1, pp. 64–73.

    Google Scholar 

  7. Fridovich, I., J. Biol. Chem., 1963, vol. 238, no.12, pp. 3921–3928.

    Google Scholar 

  8. Claiborne, A. and Fridovich, I., Biochemistry, 1979, vol. 18, no.11, pp. 2327–2335.

    Google Scholar 

  9. Lebedeva, O.V., Ugarova, N.N., and Berezin, I.V., Biokhimiya, 1977, vol. 42, no.8, pp. 1372–1380.

    Google Scholar 

  10. Ugarova, N.N., Lebedeva, O.V., Kurilina, T.A., and Berezin, I.V., Biokhimiya, 1977, vol. 42, no.9, pp. 1577–1584.

    Google Scholar 

  11. Lebedeva, O.V., Dombrovskii, V.A., Ugarova, N.N., and Berezin, I.V., Biokhimiya, 1978, vol. 43, no.6, pp. 1024–1033.

    Google Scholar 

  12. Dolmanova, I.F., Shekhovtsova, T.N., and Kutcheryaeva, V.V., Talanta, 1987, vol. 34, no.1, pp. 201–205.

    Article  Google Scholar 

  13. Metelitza, D.I., Savenkova, M.I., and Kurchenko, V.P., Prikl. Biokhim. Mikrobiol., 1987, vol. 23, no.1.

  14. Spravochnik khimika (A Biochemist’s Reference Book), Nikol’skii, B.P, Ed., Leningrad: Khimiya, 1967, vol. 4, p. 919.

    Google Scholar 

  15. Gaponik, P.N., Ivashkevich, O.A., Krasitskii, V.A., Tuzik, A.A., and Lesnikovich, A.I., Zh. Obshch. Khim., 2002, vol. 72, no.9, pp. 1546–1551.

    Google Scholar 

  16. Finnegan, W.G., Henry, R.A., and Lofquist, R., J. Am. Chem. Soc., 1958, vol. 80, no.15, pp. 3908–3911.

    Google Scholar 

  17. Norris, W.P., J. Org. Chem., 1962, vol. 27, no.9, pp 3248–3251.

    Google Scholar 

  18. Re, R., Pellegrini, N., Pannala, A., Yahg, M., and Rice-Evans, C., Free Radical Biol. Med., 1999, vol. 26, nos.9–10, pp. 1231–1237.

    Google Scholar 

  19. Kratkaya khimicheskaya entsiklopediya (Abridged Chemical Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1961, vol. 1, pp. 803–804.

  20. Hammet, L., Physical Organic Chemistry: Reaction Rates, Equilibria and Mechanisms, New York: McGraw-Hill, 1970. Translated under the title Osnovy fizicheskoi organicheskoi khimii, Moscow: Mir, 1972, pp. 448–494.

    Google Scholar 

  21. Koldobskii, G.I., Ostrovskii, V.A., and Gidaspov, G.V., Khim. Geterotsikl. Soedin., 1980, no. 7, pp. 867–879.

  22. Pal’m, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Basics of Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1977, pp. 308–338.

    Google Scholar 

  23. Lopyrev, V.A., Larina, L.I., and Vakul’skaya, T.I., Usp. Khim., 1986, vol. 55, no.5, pp. 769–793.

    Google Scholar 

  24. Shchipanov, V.P., Khim. Geterotsikl. Soedin., 1983, no. 8, pp. 1130–1133.

  25. Kim, B.B., Biotekhnologiya peroksidaz rastenii i gribov (Biotechnology of Peroxidases of Plants and Fungi), Itogi Nauki Tekh., Ser.: Biotekhnol., Moscow: VINITI, 1992, vol. 36, pp. 126–146.

    Google Scholar 

  26. Schuller, D.J., Ban, N., van Huystee, R.B., McPherson A., and Poulos, T.L., Structure, 1996, vol. 4, no.3, pp. 311–321.

    Article  Google Scholar 

  27. Gajede, M., Henriksen, A., Schuller, D.J., Poulos, T.L., and Smith, A.T., Plant Peroxidases: Biochemistry and Physiology. Abst. IV Int. Symp., 1996, vol. 4, pp. 311–321.

    Google Scholar 

  28. Gazaryan, I.T., Uporov, I.V., Chubar’, T.A., Fechina, V.A., Mareeva, E.A., and Lagrimini, L.M., Biokhimiya, 1998, vol. 63, no.5, pp. 708–715.

    Google Scholar 

  29. Josephy, P.D., Eling, T., and Mason, R.P., J. Biol. Chem., 1982, vol. 257, no.7, pp. 3669–3675.

    Google Scholar 

  30. Rodrigez-Lopes, J.N., Gilabert, M.A., Tudela, J., Thorneley, R.N.F., and Garcia-Canovas, F., Biochemistry, 2000, vol. 39, no.43, pp. 13201–13209.

    Google Scholar 

  31. Kulys, Ju. and Ziemys, A., BMC Structural Biology, 2001, vol. 1, no.3.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 148–157.

Original Russian Text Copyright © 2005 by Karasyova, Gaponik, Metelitza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasyova, E.I., Gaponik, P.N. & Metelitza, D.I. Activation of peroxidase-catalyzed oxidation of chromogenic substrates by tetrazole and its 5-substituted derivatives. Appl Biochem Microbiol 41, 129–138 (2005). https://doi.org/10.1007/s10438-005-0022-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10438-005-0022-8

Keywords

Navigation