Skip to main content

Advertisement

Log in

Taking Stock of Foodplants Growing in the Cradle of Humankind Fossil Hominin Site, South Africa

  • Research Report
  • Published:
African Archaeological Review Aims and scope Submit manuscript

Abstract

Despite a century’s work in the UNESCO Cradle of Humankind World Heritage Site in South Africa, there has been no systematic consideration of the area’s full foodplant regime when palaeo-scientists try to reconstruct past hominin dietary ecologies. Here we present the first inventory of human-foraged foodplants currently growing in the Cradle of Humankind and discuss the time depth of the relative biomes, showing that some of the plant regimes may well have been available for hominin foraging throughout the Quaternary. We list 223 taxa, highlighting the most species-rich foodplant families in the Cradle, such as the Poaceae, Apocynaceae, and Fabaceae. Our results show an almost equal availability of edible fruits, leaves, and underground/underwater storage organs (USOs) in the Cradle’s foodplant population, supporting work suggesting diet specialization or flexible foraging strategies for the Cradle’s hominins. Whereas it was thought that human geophyte and/or USO consumption was particularly high on the Cape Fynbos landscape during the middle-late Pleistocene, the richness of USO plant foods growing in the Cradle—most of them non-geophytic in their growth forms (thus without specialized/modified storage systems such as tubers, corms, rhizomes or bulbs)—demonstrates that such resources were probably also abundantly available to inland hominin populations. We suggest that future dietary reconstructions for the Cradle’s hominins may benefit from working with the known foodplant population presented here.

Résumé

Malgré un siècle de travail sur le site du patrimoine mondial du berceau de l'humanité de l'UNESCO en Afrique du Sud, il n'y a eu aucune considération systématique du régime complet des plantes alimentaires de la région lorsque les paléo-scientifiques tentent de reconstruire les écologies alimentaires des hominidés du passé. Nous présentons ici le premier inventaire des plantes alimentaires récoltées par l'homme qui poussent actuellement dans le berceau de l'humanité et discutons de la profondeur temporelle des biomes relatifs, montrant que certains des régimes végétaux pourraient bien avoir été disponibles pour la recherche de nourriture par les hominidés tout au long du Quaternaire. Nous listons 223 taxons, mettant en évidence les familles de plantes alimentaires les plus riches en espèces du Berceau telles que les Poaceae, les Apocynaceae et les Fabaceae. Nos résultats montrent une disponibilité presque égale de fruits comestibles, de feuilles et d'organes de stockage souterrains/sous-marins (USO) dans la population de plantes alimentaires du berceau, soutenant les travaux qui suggèrent une spécialisation du régime alimentaire ou des stratégies de recherche de nourriture flexibles pour les hominidés du berceau. Alors que l’on pensait que la consommation de géophytes et/ou d'USO était particulièrement élevée dans le paysage du Cap Fynbos pendant le Pléistocène moyen-tardif, la richesse des aliments végétaux USO poussant dans le berceau - la plupart d'entre eux non géophytiques dans leurs formes de croissance (donc sans systèmes de stockage spécialisés/modifiés tels que tubercules, bulbes, rhizomes ou bulbes) - démontre que ces ressources étaient probablement aussi disponibles en abondance pour les populations d'hominidés de l'intérieur. Nous suggérons que les futures reconstructions alimentaires pour des hominidés du berceau pourraient bénéficier du travail avec la population de plantes alimentaires connue présentée ici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Altolaguirre, Y., Schulz, M., Gibert, L., & Bruch, A. A. (2021). Mapping Early Pleistocene environments and the availability of plant food as a potential driver of early Homo presence in the Guadix-Baza Basin (Spain). Journal of Human Evolution, 155, 102986.

    Article  Google Scholar 

  • Arthan, W., Dunning, L. T., Besnard, G., Manzi, S., Kellogg, E. A., Hackel, J., Lehmann, C. E., Mitchley, J., & Vorontsova, M. S. (2021). Complex evolutionary history of two ecologically significant grass genera, Themeda and Heteropogon (Poaceae: Panicoideae: Andropogoneae). Botanical Journal of the Linnean Society, 20, 1–19.

    Google Scholar 

  • Beentjie, H. (2016). The Kew Plant Glossary: An illustrated dictionary of plant terms (2nd ed.). Kew Publishing.

    Google Scholar 

  • Bhat, R. B., Rubuluza, T., & Jäger, A. K. (2002). The bio-diversity of traditional vegetables of the Transkei region in the Eastern Cape of South Africa. South African Journal of Botany, 68(1), 94–99.

    Article  Google Scholar 

  • Bianconi, M. E., Hackel, J., Vorontsova, M. S., Alberti, A., Arthan, W., Burke, S. V., Duvall, M. R., Kellogg, E. A., Lavergne, S., McKain, M. R., & Meunier, A. (2020). Continued adaptation of C4 photosynthesis after an initial burst of changes in the Andropogoneae grasses. Systematic Biology, 69(3), 445–461.

    Article  Google Scholar 

  • Blumenschine, R. J. (1991). Hominid carnivory and foraging strategies, and the socio-economic function of early archaeological sites. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 334(1270), 211–221.

    Article  Google Scholar 

  • Botha, M. S., Cowling, R. M., Esler, K. J., de Vynck, J. C., Cleghorn, N. E., & Potts, A. J. (2020). Return rates from plant foraging on the Cape south coast: Understanding early human economies. Quaternary Science Reviews, 235, 106129.

    Article  Google Scholar 

  • Botha, M. S., Cowling, R. M., Esler, K. J., De Vynck, J., & Potts, A. J. (2019). Have humans living within the Greater Cape Floristic Region used the same plant species through time? South African Journal of Botany, 122, 11–20.

    Article  Google Scholar 

  • Bouchenak-Khelladi, Y., Anthony Verboom, G., Hodkinson, T. R., Salamin, N., Francois, O., Ni Chonghaile, G., & Savolainen, V. (2009). The origins and diversification of C4 grasses and savanna-adapted ungulates. Global Change Biology, 15(10), 2397–2417.

    Article  Google Scholar 

  • Bredenkamp, G. J., Spada, F., & Kazmierczak, E. (2002). On the origin of northern and southern hemisphere grasslands. Plant Ecology, 163(2), 209–229.

    Article  Google Scholar 

  • Bruyns, P. V., Klak, C., & Hanáček, P. (2011). Age and diversity in Old World succulent species of Euphorbia (Euphorbiaceae). Taxon, 60(6), 1717–1733.

    Article  Google Scholar 

  • Bruyns, P. V., Klak, C., & Hanáček, P. (2015). Recent radiation of Brachystelma and Ceropegia (Apocynaceae) across the Old World against a background of climatic change. Molecular Phylogenetics and Evolution, 90, 49–66.

    Article  Google Scholar 

  • Carruthers, T., Muñoz-Rodríguez, P., Wood, J. R., & Scotland, R. W. (2020). The temporal dynamics of evolutionary diversification in Ipomoea. Molecular Phylogenetics and Evolution, 146, 106768.

    Article  Google Scholar 

  • Carruthers, V. (2014). The Magaliesberg (Biosphere ed.). Protea Book House.

    Google Scholar 

  • Christin, P. A., Spriggs, E., Osborne, C. P., Strömberg, C. A., Salamin, N., & Edwards, E. J. (2014). Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology, 63(2), 153–165.

    Article  Google Scholar 

  • Codron, D. M. (2003). Dietary ecology of Chacma baboons (Papio Ursinus) and Pleistocene Cercopithecoidea in Savanna environments of South Africa. MA thesis, University of Cape Town.

    Google Scholar 

  • Codron, D., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., & Codron, J. (2008). What insights can baboon feeding ecology provide for early hominin niche differentiation? International Journal of Primatology, 29(3), 757–772.

    Article  Google Scholar 

  • Davies, T. J., Daru, B. H., Bezeng, B. S., Charles-Dominique, T., Hempson, G. P., Kabongo, R. M., Maurin, O., Muasya, A. M., van der Bank, M., & Bond, W. J. (2020). Savanna tree evolutionary ages inform the reconstruction of the paleoenvironment of our hominin ancestors. Scientific Reports, 10(1), 1–8.

    Article  Google Scholar 

  • Deacon, H. J. (1993). Planting an idea: An archaeology of Stone Age gatherers in South Africa. South African Archaeological Bulletin, 48(158), 86–93.

    Article  Google Scholar 

  • De Vynck, J. C., Van Wyk, B. E., & Cowling, R. M. (2016). Indigenous edible plant use by contemporary Khoe-San descendants of South Africa's Cape South Coast. South African Journal of Botany, 102, 60–69.

    Article  Google Scholar 

  • Dirks, P. H., & Berger, L. R. (2013). Hominin-bearing caves and landscape dynamics in the Cradle of Humankind, South Africa. Journal of African Earth Sciences, 78, 109–131.

    Article  Google Scholar 

  • Dirks, P. H., Placzek, C. J., Fink, D., Dosseto, A., & Roberts, E. (2016). Using 10Be cosmogenic isotopes to estimate erosion rates and landscape changes during the Plio-Pleistocene in the Cradle of Humankind, South Africa. Journal of Human Evolution, 96, 19–34.

    Article  Google Scholar 

  • Dominguez-Rodrigo, M., & Pickering, T. R. (2017). The meat of the matter: An evolutionary perspective on human carnivory. Azania: Archaeological Research in Africa, 52(1), 4–32.

    Article  Google Scholar 

  • Dlamini, B. (1981). Swaziland flora: Their local names and uses. Ministry of Agriculture and Cooperatives Forestry Section.

    Google Scholar 

  • Dominy, N. J. (2012). Hominins living on the sedge. Proceedings of the National Academy of Sciences, 109(50), 20171–20172.

    Article  Google Scholar 

  • Dominy, N. J., Vogel, E. R., Yeakel, J. D., Constantino, P., & Lucas, P. W. (2008). Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evolutionary Biology, 35(3), 159–175.

    Article  Google Scholar 

  • Dunbar, R. I. (1976). Australopithecine diet based on a baboon analogy. Journal of Human Evolution, 5(2), 161–167.

    Article  Google Scholar 

  • Dusseldorp, G., Lombard, M., & Wurz, S. (2013). Pleistocene Homo and the updated Stone Age sequence of South Africa. South African Journal of Science, 109(5), 1–7.

    Google Scholar 

  • Dusseldorp, G. L., & Lombard, M. (2021). Constraining the likely technological niches of late Middle Pleistocene hominins with Homo naledi as case study. Journal of Archaeological Method and Theory, 28(1), 11–52.

    Article  Google Scholar 

  • Eloff, G. (2010). The phytosiology of the natural vegetation occurring in the Cradle of Humankind World Heritage Site Gauteng, South Africa. B.A. Honours Project, University of South Africa.

    Google Scholar 

  • Elton, S., & Dunn, J. (2020). Baboon biogeography, divergence, and evolution: Morphological and paleoecological perspectives. Journal of Human Evolution, 145, 102799.

    Article  Google Scholar 

  • Fishbein, M., Livshultz, T., Straub, S. C., Simões, A. O., Boutte, J., McDonnell, A., & Foote, A. (2018). Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. American Journal of Botany, 105(3), 495–513.

    Article  Google Scholar 

  • Fox, F. W. & Norwood-Young, M. E. (1982). Food from the wild-edible plants of Southern Africa. Delta.

  • Gibbon, R. J., Pickering, T. R., Sutton, M. B., Heaton, J. L., Kuman, K., Clarke, R. J., Brain, C. K., & Granger, D. E. (2014). Cosmogenic nuclide burial dating of hominin-bearing Pleistocene cave deposits at Swartkrans, South Africa. Quaternary Geochronology, 24, 10–15.

    Article  Google Scholar 

  • Grine, F. E., Ungar, P. S., & Teaford, M. F. (2006). Was the early Pliocene hominin Australopithecus anamensis a hard object feeder? South African Journal of Science, 102(7), 301–310.

    Google Scholar 

  • Grine, F. E., Sponheimer, M., Ungar, P. S., Lee-Thorp, J., & Teaford, M. F. (2012). Dental microwear and stable isotopes inform the paleoecology of extinct hominins. American Journal of Physical Anthropology, 148(2), 285–317.

    Article  Google Scholar 

  • Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. The Quarterly Review of Biology, 90(3), 251–268.

    Article  Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–54.

    Article  Google Scholar 

  • Henry, A. G., Hutschenreuther, A., Paine, O. C., Leichleiter, J., Codron, D., Codron, J., Loudon, J., Adolph, S., & Sponheimer, M. (2019). Influences on plant nutritional variation and their potential effects on hominin diet selection. Review of Palaeobotany and Palynology, 261, 18–30.

    Article  Google Scholar 

  • Henry, A. G., Ungar, P. S., Passey, B. H., Sponheimer, M., Rossouw, L., Bamford, M., Sandberg, P., de Ruiter, D. J., & Berger, L. (2012). The diet of Australopithecus sediba. Nature, 487(7405), 90–93.

    Article  Google Scholar 

  • Herries, A. I., Hopley, P. J., Adams, J. W., Curnoe, D., & Maslin, M. A. (2010). Geochronology and palaeoenvironments of southern African hominin-bearing localities: A reply to Wrangham et al., 2009. Shallow-Water Habitats as Sources of Fallback Foods for Hominins. American Journal of Physical Anthropology, 143(4), 640–646.

    Article  Google Scholar 

  • Herries, A. I., Martin, J. M., Leece, A. B., Adams, J. W., Boschian, G., Joannes-Boyau, R., Edwards, T. R., Mallett, T., Massey, J., Murszewski, A. & Neubauer, S. (2020). Contemporaneity of Australopithecus, Paranthropus, and early Homo erectus in South Africa. Science, 368(6486).

  • Isaac, G. (1978). The food-sharing behavior of protohuman hominids. Scientific American, 238(4), 90–109.

    Article  Google Scholar 

  • Jaca, T. P., & Kambizi, L. (2011). Antibacterial properties of some wild leafy vegetables of the Eastern Cape Province, South Africa. Journal of Medicinal Plants Research, 5(13), 2624–2628.

    Google Scholar 

  • Jolly, C. J. (1970). The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man, 5(1), 5–26.

    Article  Google Scholar 

  • Joubert, L., Klak, C., Venter, A. M., Venter, H. J., & Bruyns, P. V. (2016). A widespread radiation in the Periplocoideae (Apocynaceae): The case of Cryptolepis. Taxon, 65(3), 487–501.

    Article  Google Scholar 

  • Klaassen, E. S., & Craven, P. (2003). Checklist of grasses in Namibia. SANBI.

    Google Scholar 

  • Klee, M., Zach, B., & Stika, H. P. (2004). Four thousand years of plant exploitation in the Lake Chad Basin (Nigeria), part III: Plant impressions in potsherds from the Final Stone Age Gajiganna Culture. Vegetation History and Archaeobotany, 13(2), 131–142.

    Article  Google Scholar 

  • Kumar, R., & Saikia, P. (2020). Wild edible plants of Jharkhand and their utilitarian perspectives. Indian Journal of Traditional Knowledge, 19(2), 237–250.

    Google Scholar 

  • Lee, R. B. (1979). The !Kung San: Men, women, and work in a foraging society. Cambridge University Press.

    Google Scholar 

  • Lee-Thorp, J., Likius, A., Mackaye, H. T., Vignaud, P., Sponheimer, M., & Brunet, M. (2012). Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proceedings of the National Academy of Sciences, 109(50), 20369–20372.

    Article  Google Scholar 

  • Lee-Thorp, J., Thackeray, J. F., & van der Merwe, N. (2000). The hunters and the hunted revisited. Journal of Human Evolution, 39(6), 565–576.

    Article  Google Scholar 

  • Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27(4), 361–372.

    Article  Google Scholar 

  • Linares-Matás, G. J., & Clark, J. (2021). Seasonality and Oldowan behavioral variability in East Africa. Journal of Human Evolution, September, 2021, 103070.

    Google Scholar 

  • Lombard, M., & Gärdenfors, P. (2021). Causal cognition and theory of mind in evolutionary cognitive archaeology. Biological Theory, 2021. https://doi.org/10.1007/s13752-020-00372-5

  • Lombard, M., & Kyriacou, K. (2020). Hunter-gatherer women. Oxford Research Encyclopaedia of Anthropology. https://doi.org/10.1093/acrefore/9780190854584.013.105

  • Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J., & Mitchell, P. (2012). South African and Lesotho Stone Age sequence updated (I). South African Archaeological Bulletin, 67(195), 123–144.

    Google Scholar 

  • Lüdecke, T., Kullmer, O., Wacker, U., Sandrock, O., Fiebig, J., Schrenk, F., & Mulch, A. (2018). Dietary versatility of early Pleistocene hominins. Proceedings of the National Academy of Sciences, 115(52), 13330–13335.

    Article  Google Scholar 

  • Magwede, K. (2018). A quantitative survey of traditional plant use of the Vhavenḓa, Limpopo Province, South Africa. Ph.D. thesis, University of Johannesburg.

    Google Scholar 

  • Makhubela, T. V., Kramers, J. D., Scherler, D., Wittmann, H., Dirks, P., & Winkler, S. R. (2019). Effects of long soil surface residence times on apparent cosmogenic nuclide denudation rates and burial ages in the Cradle of Humankind, South Africa. Earth Surface Processes and Landforms, 44(15), 2968–2981.

    Article  Google Scholar 

  • Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59(3-4), 425–443.

    Article  Google Scholar 

  • Marshall, L. (1976). The! Kung of Nyae Nyae. Harvard University Press.

    Book  Google Scholar 

  • Mercader, J. (2009). Mozambican grass seed consumption during the Middle Stone Age. Science, 326(5960), 1680–1683.

    Article  Google Scholar 

  • Milton, K. (1999). A hypothesis to explain the role of meat-eating in human evolution. Evolutionary Anthropology Issues News and Reviews, 8(1), 11–21.

    Article  Google Scholar 

  • Mogg, A. (1975). Important plants of Sterkfontein: An illustrated guide. University of the Witwatersrand Press.

    Google Scholar 

  • Moteetee, A., Moffett, R. O., & Seleteng-Kose, L. (2019). A review of the ethnobotany of the Basotho of Lesotho and the Free State Province of South Africa (South Sotho). South African Journal of Botany, 122, 21–56.

    Article  Google Scholar 

  • Moteetee, A., & Van Wyk, B. E. (2006). Sesotho names for exotic and indigenous edible plants in southern Africa. Bothalia, 36(1), 25–32.

    Article  Google Scholar 

  • Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute.

    Google Scholar 

  • Mutie, F. M., Rono, P. C., Kathambi, V., Hu, G. W., & Wang, Q. F. (2020). Conservation of wild food plants and their potential for combatting food insecurity in Kenya as exemplified by the drylands of Kitui County. Plants, 9(8), 1017.

    Article  Google Scholar 

  • Neumann, F. H., & Bamford, M. K. (2015). Shaping of modern southern African biomes: Neogene vegetation and climate changes. Transactions of the Royal Society of South Africa, 70(3), 195–212.

    Article  Google Scholar 

  • O'Connell, J. F., Hawkes, K., Lupo, K. D., & Jones, N. B. (2002). Male strategies and Plio-Pleistocene archaeology. Journal of Human Evolution, 43(6), 831–872.

    Article  Google Scholar 

  • Opperman, H., & Heydenrych, B. (1990). A 22 000-year-old Middle Stone Age camp site with plant food remains from the north-eastern Cape. South African Archaeological Bulletin, 45(152), 93–99.

    Article  Google Scholar 

  • Paine, O. C., Koppa, A., Henry, A. G., Leichliter, J. N., Codron, D., Codron, J., Lambert, J. E., & Sponheimer, M. (2018). Grass leaves as potential hominin dietary resources. Journal of Human Evolution, 117, 44–52.

    Article  Google Scholar 

  • Paine, O. C., Koppa, A., Henry, A. G., Leichliter, J. N., Codron, D., Codron, J., Lambert, J. E., & Sponheimer, M. (2019). Seasonal and habitat effects on the nutritional properties of savanna vegetation: Potential implications for early hominin dietary ecology. Journal of Human Evolution, 133, 99–107.

    Article  Google Scholar 

  • Partridge, T. C., Werdelin, L., & Sanders, W. J. (2010). Tectonics and geomorphology of Africa during the Phanerozoic. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic Mammals of Africa (pp. 3–26). University of California Press.

    Google Scholar 

  • Peters, C. R., & Maguire, B. (1981). Wild plant foods of the Makapansgat area: A modern ecosystems analogue for Australopithecus africanus adaptations. Journal of Human Evolution, 10(7), 565–583.

    Article  Google Scholar 

  • Peters, C. R., O'Brien, E. M., & Drummond, R. B. (1992). Edible wild plants of sub-Saharan Africa. Kew Publishing.

  • Peters, C. R., & Vogel, J. C. (2005). Africa's wild C4 plant foods and possible early hominid diets. Journal of Human Evolution, 48(3), 219–236.

    Article  Google Scholar 

  • Pickering, R., Dirks, P. H., Jinnah, Z., De Ruiter, D. J., Churchill, S. E., Herries, A. I., Woodhead, J. D., Hellstrom, J. C., & Berger, L. R. (2011a). Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science, 333(6048), 1421–1423.

    Article  Google Scholar 

  • Pickering, R., Kramers, J. D., Hancox, P. J., de Ruiter, D. J., & Woodhead, J. D. (2011b). Contemporary flowstone development links early hominin bearing cave deposits in South Africa. Earth and Planetary Science Letters, 306(1-2), 23–32.

    Article  Google Scholar 

  • Rose, L., & Marshall, F. (1996). Meat eating, hominid sociality, and home bases revisited. Current Anthropology, 37(2), 307–338.

    Article  Google Scholar 

  • Schnorr, S. L., Crittenden, A. N., & Henry, A. G. (2016). Impact of brief roasting on starch gelatinization in whole foods and implications for plant food nutritional ecology in human evolution. Ethnoarchaeology, 8(1), 30–56.

    Article  Google Scholar 

  • Scott, L., Anderson, H. M., & Anderson, J. M. (1997). Vegetation history. In R. M. Cowling, D. M. Richardson, S. M. Pierce, & S.M. (Eds.), Vegetation of southern Africa (pp. 62–84). Cambridge University Press.

    Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., & Walker, A. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436(7051), 693–695.

    Article  Google Scholar 

  • Semaw, S., Rogers, M. J., Simpson, S. W., Levin, N. E., Quade, J., Dunbar, N., McIntosh, W. C., Cáceres, I., Stinchcomb, G. E., Holloway, R. L., & Brown, F. H. (2020). Co-occurrence of Acheulian and Oldowan artifacts with Homo erectus cranial fossils from Gona, Afar, Ethiopia. Science. Advances, 6(10), eaaw4694.

    Google Scholar 

  • Siebert, F., & Siebert, S. J. (2005). Dolomitic vegetation of the Sterkfontein Caves World Heritage Site and its importance in the conservation of Rocky Highveld Grassland. Koedoe, 48(1), 17–31.

    Article  Google Scholar 

  • Smith, C. A. (1966). Common names of South African plants. South African Government Printer.

    Google Scholar 

  • Sponheimer, M., Passey, B. H., De Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., & Lee-Thorp, J. A. (2006). Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science, 314(5801), 980–982.

    Article  Google Scholar 

  • Tebkew, M. (2015). Wild and semi-wild edible plants in Chilga District, Northwestern Ethiopia: Implication for food security and climate change adaptation. Journal of Global Journal Wood Science, Forestry and Wildlife, 3(3), 072–082.

    Google Scholar 

  • Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS One, 3(4), e2044.

    Article  Google Scholar 

  • Ungar, P. S., & Sponheimer, M. (2011). The diets of early hominins. Science, 334(6053), 190–193.

    Article  Google Scholar 

  • Ungar, P. S., & Teaford, M. F. (Eds.). (2002). Human diet: Its origin and evolution. Greenwood Publishing Group.

    Google Scholar 

  • Van Casteren, A., Strait, D. S., Swain, M. V., Michael, S., Thai, L. A., Philip, S. M., Saji, S., Al-Fadhalah, K., Almusallam, A. S., Shekeban, A., & McGraw, W. S. (2020). Hard plant tissues do not contribute meaningfully to dental microwear: Evolutionary implications. Scientific Reports, 10(1), 1–9.

    Google Scholar 

  • Van Damme, P., Van Den Eynden, V. & Vernemmen, P. (1992). Plant uses by the Topnaar of the Sesfontein area (Namib Desert). Afrika Focus, 8(3-4).

  • Van der Merwe, N. J., Lee-Thorp, J. A., & Raymond, J. S. (1993). Light, stable isotopes and the subsistence base of formative cultures at Valdivia, Ecuador. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 63–97). Springer.

    Chapter  Google Scholar 

  • Van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A., & Luyt, J. (2003). The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution, 44(5), 581–597.

    Article  Google Scholar 

  • Van der Merwe, N. J., Masao, F. T., & Bamford, M. K. (2008). Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. South African Journal of Science, 104(3), 153–155.

    Google Scholar 

  • Van Oudtshoorn, F. V. (1999). Guide to grasses of southern Africa. Briza Press.

    Google Scholar 

  • Van Wyk, B. E. (2005). Food plants of the world. Briza Press.

    Google Scholar 

  • Van Wyk, B. E., & Gericke, N. (2000). People's plants: A guide to useful plants of Southern Africa. Briza Press.

    Google Scholar 

  • Vincent, A. S. (1985). Plant foods in savanna environments: A preliminary report of tubers eaten by the Hadza of northern Tanzania. World Archaeology, 17(2), 131–148.

    Article  Google Scholar 

  • Vinnicombe, P. (1976). People of the Eland: Rock Paintings of the Drakensberg Bushmen as a Reflection of their Life and Thought. University of Natal Press.

    Google Scholar 

  • Von Koenen, E. (2001). Medicinal, poisonous, and edible plants in Namibia. Klaus Hess Publishers.

    Google Scholar 

  • Wadley, L., Backwell, L., d’Errico, F., & Sievers, C. (2020). Cooked starchy rhizomes in Africa 170 thousand years ago. Science, 367(6473), 87–91.

    Article  Google Scholar 

  • Wehmeyer, A. S. (1986). Edible wild plants of southern Africa: Data on the nutrient contents of over 300 species. Bothalia, 14, 613–615.

    Article  Google Scholar 

  • Welcome, A. K., & Van Wyk, B. E. (2019). An inventory and analysis of the food plants of southern Africa. South African Journal of Botany, 122, 136–179.

    Article  Google Scholar 

  • Wiersema, J. H., & León, B. (1999). World economic plants: A standard reference. CRC Press (Boca Raton).

    Book  Google Scholar 

  • Wolpoff, M. H. (1973). Posterior tooth size, body size, and diet in South African gracile australopithecines. American Journal of Physical Anthropology, 39(3), 375–393.

    Article  Google Scholar 

  • Wrangham, R., Cheney, D., Seyfarth, R., & Sarmiento, E. (2009). Shallow-water habitats as sources of fallback foods for hominins. American Journal of Physical Anthropology, 140(4), 630–642.

    Article  Google Scholar 

  • Yang, Y. Y., Meng, Y., Wen, J., Sun, H., & Nie, Z. L. (2016). Phylogenetic analyses of Searsia (Anacardiaceae) from eastern Asia and its biogeographic disjunction with its African relatives. South African Journal of Botany, 106, 129–136.

    Article  Google Scholar 

  • Youngblood, D. (2004). Identification and quantification of edible plant foods in the Upper (Nama) Karoo. South Africa. Economic Botany, 58(1), S43–S65.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ashton Welcome-Ruiters (South African National Biodiversity Institute) for her assistance in compiling the database for the foodplants of the Cradle of Humankind, Louis Scott (University of the Free State, Bloemfontein) for reading and commenting on an early version of the manuscript, and Stephanie Baker and Matt Caruana for discussion on Cradle research in general.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlize Lombard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombard, M., van Aardt, A.C. Taking Stock of Foodplants Growing in the Cradle of Humankind Fossil Hominin Site, South Africa. Afr Archaeol Rev 39, 59–77 (2022). https://doi.org/10.1007/s10437-021-09470-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10437-021-09470-6

Keywords

Navigation