Skip to main content

Wood Charcoal from Border Cave’s Member 1RGBS: Evidence for the Environment and Plant Use During MIS 5

Abstract

We conducted an anthracological analysis of charcoal remains from Border Cave’s member 1RGBS to provide environmental context for the site’s occupation ca. 74 ka. Charcoal specimens were analyzed to assess their quality and quantity, and identify their tree taxa to reconstruct the vegetation communities available to the site’s occupants. Specimens were analyzed using light stereomicroscopy and following standard anthracology methods. We identified the tree taxa that grow predominantly in the savanna, forest, and grassland vegetation communities. Using the current distribution of these communities as a reference, we suggest that the archaeological Border Cave landscape included vegetation types that now grow in southern Africa’s interior warm parts. Our data revealed that Tarchonanthus sp. was collected most abundantly at this time, possibly for its medicinal and cosmetic properties. Euphorbia species were also collected, perhaps for their latex before their wood was burned. Furthermore, green wood logs of Tarchonanthus sp. were burned or discarded into the fire; this is evidenced by the high proportion of fragments of this species bearing radial cracks. There may have been unfavorable environmental conditions in the archaeological landscape that resulted in the wood vessel occlusion of many trees. These were likely episodic microclimatic conditions around the cave during some growth phases of the trees. These conditions and their intensity, however, were not fatal to the trees in this dataset.

Résumé

Nous avons effectué une analyze anthracologique des restes de charbon du membre 1RGBS de Border Cave pour fournir un contexte environnemental pour l’occupation du site ca. 74 ka. Des spécimens de charbon de bois ont été analysés pour évaluer leur qualité et leur quantité et identifier leurs taxons d’arbres pour reconstituer les communautés végétales disponibles pour les occupants du site. Les échantillons ont été analysés en utilisant la stéréomicroscopie optique et en suivant les méthodes d’anthracologie standard. Nous avons identifié les taxons d’arbres qui poussent principalement dans les communautés végétales de savane, de forêt et de prairie. En utilisant la distribution actuelle de ces communautés comme référence, nous suggérons que le paysage archéologique de Border Cave comprenait des types de végétation qui poussent maintenant dans les régions intérieures et chaudes de l’Afrique australe. Nos données ont révélé que Tarchonanthus sp. a été récolté le plus abondamment à cette époque, peut-être pour ses propriétés médicinales et cosmétiques. Les espèces d’Euphorbia ont également été récoltées, peut-être pour leur latex avant que leur bois ne soit brûlé. De plus, des bûches de bois vert de Tarchonanthus sp. ont été brûlés ou jetés dans le feu ; ceci est mis en évidence par la forte proportion de fragments de cette espèce présentant des fissures radiales. Il peut y avoir eu des conditions environnementales défavorables dans le paysage archéologique qui ont entraîné l’occlusion des vaisseaux en bois de nombreux arbres. Il s’agissait probablement de conditions microclimatiques épisodiques autour de la grotte pendant certaines phases de croissance des arbres. Ces conditions et leur intensité, cependant, n’ont pas été fatales aux arbres de cet ensemble de données.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Allott, L. (2005). Palaeoenvironments of the Middle Stone Age at Sibudu Cave, KwaZulu-Natal, South Africa: An analysis of archaeological charcoal. Ph.D. thesis. University of the Witwatersrand, South Africa

  2. Allott, L. (2006). Archaeological charcoal as a window on palaeovegetation and wood-use during the Middle Stone Age at Sibudu Cave. Southern African Humanities, 18(1), 173–201.

    Google Scholar 

  3. Ambrose, S. H. (1998). Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. Journal of Human Evolution, 34(6), 623–651. https://doi.org/10.1063/1.1803624

    Article  Google Scholar 

  4. Asouti, E., & Austin, P. (2005). Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environmental Archaeology, 10(1), 1–18. https://doi.org/10.1179/146141005790083867

    Article  Google Scholar 

  5. Backwell, L. R., D’Errico, F., Banks, W. E., de la Peña, P., Sievers, C., Stratford, D., et al. (2018). New excavations at Border Cave, KwaZulu-Natal, South Africa. Journal of Field Archaeology, 43(6), 417–436. https://doi.org/10.1080/00934690.2018.1504544

  6. Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., Cronin, M., Hermes, J., et al. (2011). On the role of the Agulhas system in ocean circulation and climate. Nature, 472(7344), 429–436. https://doi.org/10.1038/nature09983

    Article  Google Scholar 

  7. Beaumont, P. B. (1978). Border Cave. Ph.D. thesis. University of Cape Town, South Africa

  8. Butzer, K. W., Beaumont, P. B., & Vogel, J. C. (1978). Lithostratigraphy of Border Cave, KwaZulu, South Africa: A Middle Stone Age sequence beginning c. 195,000 b.p. Journal of Archaeological Science, 5, 317–341. https://doi.org/10.1016/0305-4403(78)90052-3

    Article  Google Scholar 

  9. Byrne, C., Dotte-Sarout, E., & Winton, V. (2013). Charcoals as indicators of ancient tree and fuel strategies: An application of anthracology in the Australian Midwest. Australian Archaeology, 77, 94–106. https://doi.org/10.1002/ana.24090

    Article  Google Scholar 

  10. Caley, T., Kim, J. H., Malaizé, B., Giraudeau, J., Laepple, T., Caillon, N., et al. (2011). High-latitude obliquity as a dominant forcing in the Agulhas current system. Climate of the past, 7(4), 1285–1296. https://doi.org/10.5194/cp-7-1285-2011

    Article  Google Scholar 

  11. Cartwright, C., & Parkington, J. (1997). The wood charcoal assemblages from Elands Bay Cave, southwestern Cape: Principles, procedures and preliminary interpretation. The South African Archaeological Bulletin, 52(165), 59–72. https://doi.org/10.2307/3888977

    Article  Google Scholar 

  12. Cartwright, C. R. (2013). Identifying the woody resources of Diepkloof Rock Shelter (South Africa) using scanning electron microscopy of the MSA wood charcoal assemblages. Journal of Archaeological Science, 40(9), 3463–3474. https://doi.org/10.1016/j.jas.2012.12.031

    Article  Google Scholar 

  13. Cartwright, C. R., Parkington, J., & Cowling, R. (2014). Understanding Late and Terminal Pleistocene vegetation change in the Western Cape, South Africa. In C. J. Stevens, S. Nixon, A. M. Murray, & D. Q. Fuller (Eds.), Archaeology of African plant use (pp. 59–72). Left Coast Press.

    Google Scholar 

  14. Caruso Fermé, L., Théry-Parisot, I., Carré, A., & Fernández, P. M. (2018). The shrinkage cracks and the diameter of the log: An experimental approach toward fuel management by Patagonian hunter-gatherer (Paredón Lanfré site. Río Negro Province). Argentin. Archaeological and Anthropological Sciences, 10(7), 1821–1829. https://doi.org/10.1007/s12520-017-0487-4

    Article  Google Scholar 

  15. Chikumbirike, J. (2014). Archaeological and palaeoecological implications of charcoal assemblages dated to the Holocene from Great Zimbabwe and its hinterland. Ph.D. thesis. University of the Witwatersrand, South Africa

  16. Chrzazvez, J., Théry-Parisot, I., Fiorucci, G., Terral, J. F., & Thibaut, B. (2014). Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: Experimental approach combining charcoal analysis and biomechanics. Journal of Archaeological Science, 44(1), 30–42. https://doi.org/10.1016/j.jas.2014.01.006

    Article  Google Scholar 

  17. Coates-Palgrave, K. C. (1981). Trees of southern Africa. Struik Publishers.

    Google Scholar 

  18. Cooke, H. B. S., Malan, B. D., & Wells, L. H. (1945). Fossil man in the Lebombo Mountains, South Africa: The “Border Cave”, Ingwavuma District, Zululand. Man, 45, 6–13.

    Article  Google Scholar 

  19. D’Errico, F., & Backwell, L. (2016). Earliest evidence of personal ornaments associated with burial: The conus shells from Border Cave. Journal of Human Evolution, 93, 91–108. https://doi.org/10.1016/j.jhevol.2016.01.002

    Article  Google Scholar 

  20. d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., et al. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences, 109(33), 13214–13219. https://doi.org/10.1073/pnas.1204213109

    Article  Google Scholar 

  21. De Micco, V., Balzano, A., Wheeler, E. A., & Baas, P. (2016). Tyloses and gums : A review of structure, function and occurrence of vessel occlusions. IAWA Journal, 37(2), 186–205. https://doi.org/10.1163/22941932-20160130

    Article  Google Scholar 

  22. Dechamps, R. (1993). Cle d’identification des Acacias Africaine. Tervuren, Belgium

  23. Dotte-Sarout, E., Carah, X., & Byrne, C. (2014). Not just carbon: Assessment and prospects for the application of anthracology in Oceania. Archaeology in Oceania, 50(1), 1–22. https://doi.org/10.1002/arco.5041

    Article  Google Scholar 

  24. Esterhuysen, A. B., & Mitchell, P. (1996). Palaeoenvironmental and archaeological implications of charcoal assemblages from Holocene sites in western Lesotho, southern Africa. Palaeoecology of Africa and the Surrounding Islands, 24, 203–232.

    Google Scholar 

  25. Esterhuysen, A. B., Mitchell, P., & Thackeray, J. F. (1999). Climatic change across the Pleistocene/Holocene Boundary in the Caledon River southern Africa: Results of a factor analysis of charcoal assemblages. South African Field Archaeology, 8, 28–34.

    Google Scholar 

  26. February, E. (1992). Archaeological charcoals as indicators of vegetation change and human fuel choice in the late holocene at Elands Bay, Western Cape Province, South Africa. Journal of Archaeological Science, 19(3), 347–354. https://doi.org/10.1016/0305-4403(92)90021-T

    Article  Google Scholar 

  27. February, E. (1993). Sensitivity of xylem vessel size and frequency to rainfall and temperature: Implications for palaeontology. Palaeontologia Africana, 30, 91–95.

    Google Scholar 

  28. Gandar, M. (1982). Rural studies in KwaZulu. (N. Bromberger & J. D. Lea, Eds.). Pietermaritsburg

  29. Grün, R., & Beaumont, P. (2001). Border cave revisited: A revised ESR chronology. Journal of Human Evolution, 40, 467–482. https://doi.org/10.1006/jhev.2001.0471

    Article  Google Scholar 

  30. House, A., & Bamford, M. K. (2019). Investigating the utilisation of woody plant species at an Early Iron Age site in KwaZulu-Natal, South Africa, by means of identifying archaeological charcoal. Archaeological and Anthropological Sciences, 11, 6737–6750.

    Article  Google Scholar 

  31. Kromhout, C. . (1975). ’n Sleutel vir die mikroskopiese uitkenning van die vernaamste in-heemse houtsoorte van Suid-Afrika. Ph.D. thesis. University of Stellenbosch, South Africa.

  32. Lennox, S. J. (2016). Woody taxa from charcoal in Sibudu’s Middle Stone Age hearths. Ph.D. thesis. University of the Witwatersrand, South Africa.

  33. Lennox, S. J., & Bamford, M. (2015). Use of wood anatomy to identify poisonous plants Charcoal of Spirostachys africana. South African Journal of Science, 111(3–4), 1–9. https://doi.org/10.17159/sajs.2015/20140143

  34. Lennox, S. J., & Wadley, L. (2019). A charcoal study from the Middle Stone Age, 77,000 to 65,000 years ago, at Sibudu, KwaZulu-Natal. Transactions of the Royal Society of South Africa, 0(0), 1–17. https://doi.org/10.1080/0035919X.2018.1552214

  35. Limier, B., Ivorra, S., Bouby, L., Figueiral, I., Chabal, L., Cabanis, M., et al. (2018). Documenting the history of the grapevine and viticulture: A quantitative eco-anatomical perspective applied to modern and archaeological charcoal. Journal of Archaeological Science, 100, 45–61. https://doi.org/10.1016/j.jas.2018.10.001

    Article  Google Scholar 

  36. Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Moleboheng, M., et al. (2012). South African and Lesotho Stone Age sequence updated. The South African Archaeological Bulletin, 67(195), 123–144.

    Google Scholar 

  37. Marston, J. M. (2009). Modeling wood acquisition strategies from archaeological charcoal remains. Journal of Archaeological Science, 36, 2192–2200. https://doi.org/10.1016/j.jas.2009.06.002

    Article  Google Scholar 

  38. Mennega, A. M. W. (2005). Wood anatomy of the subfamily Euphorbioideae. IAWA Journal, 26(1), 1–68.

    Article  Google Scholar 

  39. Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute. 10.1007/s

  40. Rightmire, G. P., Beaumont, P. B., Bilsborough, A., Butzer, K., Davies, O., Gilead, I. J., et al. (1979). Implications of Border Cave skeletal remains for Later Pleistocene human evolution [and comments and reply]. Current Anthropology, 20(1), 23–35. https://doi.org/10.1086/202201

    Article  Google Scholar 

  41. Schweingruber, F. H. (2007). Wood structure and environment. (T. E. Timell & R. Wimmer, Eds.). Heidelberg: Springer.

  42. Terral, J.-F., & Mengual, X. (1999). Reconstruction of Holocene climate in southern France and eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 71–92.

    Article  Google Scholar 

  43. Théry-Parisot, I., Chabal, L., & Chrzavzez, J. (2010). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1–2), 142–153. https://doi.org/10.1016/j.palaeo.2009.09.016

    Article  Google Scholar 

  44. Théry-Parisot, I., Chabal, L., Costamagno, S., Berna, F., Bon, F., Bosquet, D., et al. (2008). The taphonomy of burned organic residues and combustion features in archaeological contexts. In I. Théry-Parisot, L. Chabal, & S. Costamagno (Eds.), Round table. Valbonne: CEPAM. https://doi.org/10.1179/1743284714Y.0000000509

  45. van Wyk, B., & van Wyk, P. (2013). Field guide to trees of southern Africa (2nd ed.). Struik Nature.

    Google Scholar 

  46. Wadley, L., Backwell, L., D’Errico, F., & Sievers, C. (2020). Cooked starchy rhizomes in Africa 170 thousand years ago. Science, 367(6473), 87–91. https://doi.org/10.1126/science.aaz5926

  47. Wadley, L., Esteban, I., Peña, P. De, Wojcieszak, M., Stratford, D., Lennox, S., et al. (2020). Fire and grass-bedding construction 200 thousand years ago at Border Cave, South Africa. Science, 369(6505), 863–866.

  48. Wheeler, E. A., Baas, P., & Gasson, P. (2007). IAWA List of microscopic features for hardwood identification. IAWA Bulletin, 10(3), 219–332. https://doi.org/10.1163/22941932-20160151

    Article  Google Scholar 

  49. Zwane, B. (2018). A reconstruction of the Late Holocene environment using archaeological charcoal from Klasies River main site cave 1, southern Cape. M.Sc. dissertation. University of the Witwatersrand, South Africa.

  50. Zwane, B., & Bamford, M. (2021). A reconstruction of woody vegetation, environment and wood use at Sibudu Cave, South Africa, based on charcoal that is dated between 73 and 72 ka. Quaternary International, 593–594(20), 95–103. https://doi.org/10.1016/j.quaint.2020.10.026

Download references

Acknowledgements

Many thanks to Dr. Lucinda Backwell, Prof. Francesco d’Errico, and Prof. Lyn Wadley for allowing the first author to analyze the charcoal samples discussed in this paper and for initiating and managing the Border Cave project. We would also like to thank the excavators and Dr. Paloma de la Pena—the latter, for her insight in explaining the excavation plan and context of the charcoal data discussed in this paper.

Funding

This work is based on the research supported in part by the DST-National Research Foundation (NRF) of South Africa (Grant Number: 121339). The study is also supported by the NRF-Centre of Excellence (CoE) in Palaeosciences and the Palaeontological Scientific Trust (PAST), Johannesburg, South Africa.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bongekile Zwane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Archaeological time period: Late Pleistocene—74 thousand years ago; Country and region discussed: South Africa, south-east/KwaZulu Natal province

Supplementary Information

ESM 1

(DOCX 29.6 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zwane, B., Bamford, M. Wood Charcoal from Border Cave’s Member 1RGBS: Evidence for the Environment and Plant Use During MIS 5. Afr Archaeol Rev (2021). https://doi.org/10.1007/s10437-021-09448-4

Download citation

Keywords

  • Tarchonanthus sp.
  • Euphorbia sp.
  • Climate
  • Charcoal
  • Green wood
  • Vessel occlusion