Advertisement

African Archaeological Review

, Volume 34, Issue 3, pp 345–362 | Cite as

Paleoenvironmental Reconstruction of Dongodien, Lake Turkana, Kenya and OSL Dating of Site Occupation During Late Holocene Climate Change

  • Gail M. Ashley
  • E. K. Ndiema
  • J. Q. G. Spencer
  • J. W. K. Harris
  • P. W. Kiura
  • L. Dibble
  • A. Du
  • P. T. Lordan
Original Article

Abstract

Dongodien (GaJi4) is a sequence of sub-lacustrine, beach, and sub-aerial lake margin sediments of the Galana Boi Formation at Koobi Fora, Lake Turkana, Kenya. The sediments accumulated under a climate of increasing aridity in the latter African Humid Period. The section contains two archaeologically rich beds (Horizons B and A). Here, we present new optically stimulated luminescence (OSL) dates that are independently corroborated with C-14. The lower bed (Horizon B) has an OSL age of 4.14 ± 0.27 ka, supported by C-14 ages of 4.71 ± 0.13, 4.79 ± 0.08, and 4.70 ± 0.06 ka cal BP. The upper bed (Horizon A) has an OSL age of 2.34 ± 0.20 ka, consistent with that of site stratigraphy. In contrast to luminescence dating attempts elsewhere in the East African Rift System, quartz-OSL from this locality and sites FwJj5 and FwJj25 ~40 km NW has a dominant fast component and robust intrinsic characteristics. OSL confirms Dongodien recorded the first known appearance of pastoralism in East Africa; it lays within a tsetse-free corridor between northern and southern Africa. Interpretation of archaeologically rich horizons as beach deposits is consistent with published lake level curves and Holocene highstands. Archaeological material (obsidian microliths, Nderit pottery, wild and domestic mammal bones, fish bones) suggests mixtures of subsistence strategies (hunting-gathering, fishing, herding) as the climate became more arid. The site may have been chosen for reoccupation because of abundant fish associated with lacustrine upwelling near Koobi Fora, a cuspate foreland.

Keywords

Luminescence dating East Africa Pastoralism Radiocarbon dating 

Résumé

Le site de Dongodien (GaJi4) correspond à une séquence de sédiments de la marge du lac classifiables comme étant sous-lacustre, de plage, et sous-éolien. Typiques de la formation Galana Boi à Koobi Fora, au lac Turkana, au Kenya, ces sédiments se sont accumulés dans un contexte d’aridité croissante lors de la dernière période humide africaine. La section contient deux niveaux archéologiquement riches (horizons B & A). Nous présentons ici de nouveaux âges OSL, indépendamment confirmés par datation C-14. Le niveau inférieur (horizon B) présente un âge OSL de 4,23 ± 0,27 ka. Un résultat étayé par le C-14 qui présente des âges de 4,71 ± 0,13, 4,79 ± 0,08, et 4,70 ± 0,06 ka cal BP. Le niveau supérieur (horizon A) présente un âge de 2,34 ± 0,20 ka cohérent avec la stratigraphie du site. À la différence des tentatives de datation par luminescence entreprises ailleurs dans le rift Est-Africain, les résultats obtenus via la méthode quartz-OSL pour cette localité ainsi que les sites FwJj5 et FwJj25 (~40 km nord-ouest) ont une composante rapide dominante et des caractéristiques intrinsèques robustes. La méthode OSL confirme la première apparition connue du pastoralisme en Afrique de l’Est au cours du site de Dongodien le long d’un corridor dépourvu de mouches tsé-tsé entre l’Afrique septentrionale et méridionale. L’interprétation de ces horizons archéologiquement riches comme les dépôts de plage est. cohérente avec les courbes de niveaux du lac publiées et les hauts peuplements de l’Holocène. Le matériel archéologique (obsidiennes, poteries Nderit, os de mammifères domestiques et sauvages, os de poissons) suggère une diversification des stratégies de subsistance (chasse et cueillette, pêche, pastoralisme) à mesure que le climat devient aride. Ce site a peut-être été réinvesti par les populations en raison des abondantes ressources ichtyennes associées à la remontée des eaux près de Koobi Fora.

Notes

Acknowledgements

We appreciate the financial support from the National Museums of Kenya (Idle Farah, DG) through the Koobi Fora Field School and Wenner-Gren grant fellowship to E. Ndiema; an International Collaborative Research Grant from Wenner-Gren to J.W.K. Harris; and a grant from Climate and Environmental Change Initiative (CECI), Rutgers University, to G.M. Ashley and J.W.K. Harris. We thank James Wright and Richard Mortlock for stable isotope analyses. Sébastien Huot is thanked for the use of his Minimum Age Model spreadsheet and Jennifer Roozeboom for assistance with the OSL sample preparation. We are grateful to assistance in the field from Paul Watene, Tom Mukhuyu, and Ben Sila. Discussions with Birgit Keding, Emma Mbua, Carolyn Dillian, and David Braun were very helpful as we developed our model. Special thanks go to Jeremy Delaney for assistance with the preparation of the manuscript. All data were collected under a permit from the National Museums of Kenya (Dr. Idle Farah, Director). Hélène Avocat is thanked for French abstract translation. Two anonymous reviewers provided constructive and supportive comments that improved the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10437_2017_9260_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. Ambrose, S. H. (1984). Holocene environments and human adaptation in the Central Rift Valley, Kenya. Berkeley: University of California-Berkeley.Google Scholar
  2. Ambrose, S. H. (1998). Chronology of the later Stone Age and food production in East Africa. Journal of Archaeological Science, 25, 377–392.CrossRefGoogle Scholar
  3. Ammerman, A. J., Gifford, D. P., & Voorrips, A. (1978). Toward an excavation of a Kenyan pastoralist site. In I. Hodder (Ed.), Simulation studies in archaeology (pp. 123–136). Cambridge: Cambridge University Press.Google Scholar
  4. Ashley, G. M., Ndiema, E. K., Spencer, J. Q. G., Harris, J. W. K., & Kiura, P. W. (2011). Paleoenvironmental context of archaeological sites: Implications for subsistence strategies under Holocene climate change, northern Kenya. Geoarchaeology: An International Journal, 26, 809–837.CrossRefGoogle Scholar
  5. Banks, K. M. (1984). Climates, cultures and cattle: The Holocene archaeology of the eastern Sahara. Dallas: Southern Methodist University Press.Google Scholar
  6. Barthelme, J. W. (1981). Late Pleistocene-Holocene prehistory northeast of Lake Turkana, Kenya. Berkeley: University of California.Google Scholar
  7. Barthelme, J. W. (1985). Fisher-hunters and Neolithic pastoralists in eastern Turkana, Kenya. Oxford: BAR International Series 254.Google Scholar
  8. Barut, S. K. (1999). Hunter-gatherer land use patterns in later Stone Age. Journal of Anthropological Archaeology, 18, 165–200.CrossRefGoogle Scholar
  9. Behnke, R. H. (1993). Range ecology at disequilibrium: New models of natural variability and pastoral adaptation in African savannas. London: Overseas Development Institute.Google Scholar
  10. Bloszies, C., Forman, S. L., & Wright, D. K. (2015). Water level history for Lake Turkana, Kenya in the past 15,000 years and a variable transition from the African Humid Period to Holocene aridity. Global and Planetary Change, 132, 64–76.CrossRefGoogle Scholar
  11. Bower, J. (1988). Evolution of Stone Age food-producing cultures in East Africa. In J. Bower & D. Lubell (Eds.), Prehistoric cultures and environments in the Late Quaternary of Africa (pp. 91–114). Oxford: BAR International Series.Google Scholar
  12. Bower, J. R. F. (1991). The Pastoral Neolithic of East Africa. Journal of World Prehistory, 5, 48–82.Google Scholar
  13. Brooks, N. (2006). Cultural responses to aridity in the Middle Holocene and increased social complexity. Quaternary International, 151, 29–49.CrossRefGoogle Scholar
  14. Brown, J., Lynch, A. H., & Marshall, A. G. (2009). Variability of the Indian Ocean Dipole in coupled model paleoclimate simulations. Journal of Geophysical Research: Atmospheres, 114(D11).Google Scholar
  15. Butzer, K. W. (1980). The Holocene lake plain of North Rudolf, East Africa. Physical Geography, 1, 42–58.Google Scholar
  16. Butzer, K. W., Brown, F. H., & Thurber, D. L. (1969). Horizontal sediments of the lower Omo Valley: The Kibish Formation. Quaternaria, 11, 15–29.Google Scholar
  17. Butzer, K. W., Isaac, G. L., Richardson, J. L., & Washbourn-Kamau, C. (1972). Radiocarbon dating of the East African lake levels. Science, 175, 1069–1076.CrossRefGoogle Scholar
  18. Choi, J. H., Duller, G. A. T., Wintle, A. G., & Cheong, C.-S. (2006). Luminescence characteristics of quartz from the southern Kenyan Rift Valley: Dose estimation using LM-OSL SAR. Radiation Measurements, 41, 847–854.Google Scholar
  19. Chritz, K. L., Marshall, F. B., Esperanza Zagal, M., Kirerae, F., & Cerling, T. E. (2015). Environments and trypanosomiasis risks for early herders in the later Holocene of the Lake Victoria basin, Kenya. PNAS, 112, 3674–3679.Google Scholar
  20. Close, A., & Wendorf, F. (1992). The beginnings of food production in the eastern Sahara. In A. B. Gebauer & T. D. Price (Eds.), Transition to agriculture in prehistory (pp. 63–72). Madison: Prehistory Press.Google Scholar
  21. Coe, M. J., Cumming, D. H., & Phillipson, J. (1976). Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia, 22, 341–354.CrossRefGoogle Scholar
  22. Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236–238.CrossRefGoogle Scholar
  23. de Menocal, P. B. (2001). Cultural responses to climate change during the late Holocene. Science, 292, 667–673.CrossRefGoogle Scholar
  24. de Menocal, P. B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347–361.CrossRefGoogle Scholar
  25. Ellis, J. E., Galvin, K. A., McCabe, J. T., & Swift, D. M. (1987). Pastoralism and drought in Turkana District, Kenya. Nairobi: A report to NORAD.Google Scholar
  26. Feibel, C. S. (2011). A geological history of the Turkana basin. Evolutionary Anthropology, 20, 206–216.CrossRefGoogle Scholar
  27. Folk, R. L. (1980). Petrology of sedimentary rocks. Austin: Hemphill Publishing Company.Google Scholar
  28. Forman, S. L., Wright, D. K., & Bloszies, C. (2014). Variations in water level for Lake Turkana in the past 8500 years near Mt. Porr, Kenya and the transition from the African Humid Period to Holocene aridity. Quaternary Science Reviews, 97, 84–101.CrossRefGoogle Scholar
  29. Frostick, L. E., & Reid, I. (1986). Evolution and sedimentary character of lake deltas fed by ephemeral rivers in the Turkana basin, northern Kenya. In L. E. Frostick, R. W. Renaut, I. Reid, & J. J. Tiercelin (Eds.), Sedimentation in the African rifts (pp. 113–125). London: Blackwell Scientific Publications.Google Scholar
  30. Garcea, E. A. A. (2006). Semi-permanent foragers in semi-arid environments of North Africa. World Archaeology, 38, 197–219.CrossRefGoogle Scholar
  31. Garcea, E. A. A., & Hildebrand, E. A. (2009). Shifting social networks along the Nile: Middle Holocene ceramic assemblages from Sai Island, Sudan. Journal of Anthropological Archaeology, 28, 304–322.CrossRefGoogle Scholar
  32. Garcin, Y., Melnick, D., Strecker, M. R., Olago, D., & Tiercelin, J.-J. (2012). East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth and Planetary Science Letters, 331-332, 322–334.CrossRefGoogle Scholar
  33. Gifford, D. P., Isaac, G. L., & Nelson, C. (1980). Evidence for predation and pastoralism at prolonged drift: A pastoral Neolithic site in Kenya. Azania, 15, 57–108.CrossRefGoogle Scholar
  34. Gifford-Gonzalez, D. (1985). Faunal assemblages from Masai Gorge rockshelter and Marula rockshelter. Azania: Archaeological Research in Africa, 20, 69–88.CrossRefGoogle Scholar
  35. Gifford-Gonzalez, D. (1991). Bones are not enough: Analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology, 10, 215–254.CrossRefGoogle Scholar
  36. Gifford-Gonzalez, D. (1998). Early pastoralists in East Africa: Ecological and social dimensions. Journal of Anthropological Archaeology, 17, 166–200.CrossRefGoogle Scholar
  37. Gifford-Gonzalez, D. (2000). Animal disease challenges to the emergence of pastoralism in sub-Saharan Africa. African Archaeological Review, 17, 95–139.CrossRefGoogle Scholar
  38. Gifford-Gonzalez, D., Stewart, K. M., & Rybczynski, N. (1999). Human activities and site formation at modern lake margin foraging camps in Kenya. Journal of Anthropological Archaeology, 18, 397–440.CrossRefGoogle Scholar
  39. Guerin, G., Mercier, N., & Adamiec, G. (2011). Dose-rate conversion factors: Update. Ancient TL, 29, 5–8.Google Scholar
  40. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Science, 296, 336–339.CrossRefGoogle Scholar
  41. Henshilwood, C. (1996). A revised chronology for pastoralism in southernmost Africa: New evidence for sheep at c. 2000 BP from Blombos Cave, South Africa. Antiquity, 70, 945–949.Google Scholar
  42. Hilgen, F. J. (1991). Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth and Planetary Science Letters, 104, 226–244.CrossRefGoogle Scholar
  43. Horsburgh, K. A., & Rhines, A. (2010). Genetic characterization of an archaeological sheep assemblage from South Africa’s Western Cape. Journal of Archaeological Science, 37, 2906–2910.CrossRefGoogle Scholar
  44. Kamau, J. (1991). John Kamau field notes. Archaeological Section Database, National Musuems of Kenya.Google Scholar
  45. Kiura, P. W. (2005). An ethnoarchaeological and stable isotope analysis of the diets of three modern groups of people living in northern Kenya. PhD dissertation, Rutgers University.Google Scholar
  46. Kropelin, S., Verschuren, D., Lezine, A. M., Eggermont, H., & Cocquyt, C. (2008). Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science, 320, 765–768.CrossRefGoogle Scholar
  47. Kutzbach, J. E. (1981). Monsoon climate of the early Holocene: Climate experiment with Earth’s orbital parameters for 9,000 years ago. Science, 214, 59–61.CrossRefGoogle Scholar
  48. Kutzbach, J. E., & Street-Perrott, F. A. (1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr B.P. Nature, 317, 130–134.CrossRefGoogle Scholar
  49. Kutzbach, J. E., Bonan, G., Foley, J., & Harrison, S. P. (1996). Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623–626.CrossRefGoogle Scholar
  50. Leakey, L. S. B. (1935). The Stone Age races of Kenya. London: Oxford University Press.Google Scholar
  51. Marchant, R., Mumbi, C., Behera, S., & Yamagata, T. (2006). The Indian Ocean dipole—the unsung driver of climatic variability in East Africa. African Journal of Ecology, 45, 4–16.CrossRefGoogle Scholar
  52. Marean, C. W. (1992). Hunter to herder: Large mammal remains from hunter-gatherer occupation at Enkapune ya Muto rockshelter. African Archaeological Review, 10, 65–127.CrossRefGoogle Scholar
  53. Marshall, F. B. (1986). Aspects of the advent of pastoral economies in East Africa. Berkeley: University of California.Google Scholar
  54. Marshall, F. B. (1990). Origins of specialized pastoral production in East Africa. American Anthropologist, 92, 873–894.CrossRefGoogle Scholar
  55. Marshall, F. B. (1994). Archaeological perspectives on East African pastoralism. In E. Fratkin, K. Galvin, & E. Roth (Eds.), African pastoralists systems: An integrated approach (pp. 17–43). London: Lynne Rienner Pub.Google Scholar
  56. Marshall, F. B., & Hildebrand, E. (2002). Cattle before crops: The beginnings of food production in Africa. Journal of World Prehistory, 16, 99–143.CrossRefGoogle Scholar
  57. Marshall, F. B., Stewart, K., & Barthleme, J. W. (1984). Early domestic stock at Dongodien in northern Kenya. Azania, 19, 120–127.CrossRefGoogle Scholar
  58. Mohammed, M. U., Bonnefille, R., & Johnson, T. C. (1995). Pollen and isotopic records in Late Holocene sediments from Lake Turkana, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 371–383.CrossRefGoogle Scholar
  59. Ndiema, E. K. (2011). Mobility and subsistence patterns among mid Holocene Pastoralist at Koobi Fora, Northern Kenya: New archaeological sites and evidence from obsidian sourcing and geochemical characterization. PhD dissertation, Rutgers University.Google Scholar
  60. Ndiema, E. K., Dillian, C., & Braun, D. (2009). Interaction and exchange across the transition to pastoralism, Lake Turkana, Kenya. In C. Dillian & C. White (Eds.), Trade and exchange: Archaeological studies from prehistory and history (pp. 95–110). New York: Springer.Google Scholar
  61. Ndiema, E. K., Dillian, C. D., Braun, D. R., Harris, J. W. K., & Kiura, P. W. (2011). Transport and subsistence patterns at the transition to pastoralism, Koobi Fora, Kenya. Archaeometry, 53, 1085–1098.CrossRefGoogle Scholar
  62. Nicholson, S. (2000). The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change, 26, 137–158.CrossRefGoogle Scholar
  63. Owen, R. B. (1981). Quaternary diatomaceous sediments and the geological evolution of lakes, Turkana, Baringo and, Bogoria, Kenya, Rift Valley. PhD dissertation, University of London.Google Scholar
  64. Owen, R. B., & Renaut, R. W. (1986). Sedimentology, stratigraphy, and palaeoenvironments of the Holocene Galana Boi Formation, NE Lake Turkana, Kenya. In L. E. Frostick, R. W. Renaut, I. Reid, & J. J. Tiercelin (Eds.), Sedimentation in the African Rifts (pp. 311–322). London: Blackwell Scientific Publications.Google Scholar
  65. Owen, R. B., Barthelme, J. W., Renaut, R. W., & Vincens, A. (1982). Palaeolimnology and archaeology of Holocene deposits north-east of Lake Turkana, Kenya. Nature, 198, 523–529.CrossRefGoogle Scholar
  66. Phillipson, D. W. (1977). Lowasera. Azania, 12, 1–32.CrossRefGoogle Scholar
  67. Phillipson, D. W. (1984). Early food-production in central and southern Africa. In J. D. Clark & S. A. Brandt (Eds.), From hunters to farmers: The causes and consequences of food production in Africa (pp. 272–280). Berkeley: University of California Press.Google Scholar
  68. Plint, A. G. (2010). Wave- and storm-dominated shoreline and shallow-marine systems. In N. P. James & R. W. Dalrymple (Eds.), Facies Model 4 (pp. 167–199). St. Johns: Geological Association of Canada.Google Scholar
  69. Pokras, E. M., & Mix, A. C. (1987). Earth’s precession cycle and Quaternary climatic change in tropical Africa. Nature, 326, 486–487.CrossRefGoogle Scholar
  70. Renaut, R. W., & Gierlowski-Kordesch, E. H. (2010). Lakes. In N. P. James & R. W. Dalrymple (Eds.), Facies models 4 (pp. 541–575). St. Johns: Geological Association of Canada.Google Scholar
  71. Robbins, L. H. (1972). Archaeology in Turkana District, Kenya. Science, 176, 359–366.CrossRefGoogle Scholar
  72. Robbins, L. H. (1974). The Lothagam site: A late stone age fishing settlement in the Lake Rudolph basin, Kenya. PhD dissertation, Michigan State University.Google Scholar
  73. Robbins, L. H. (1984). Late prehistoric aquatic and pastoral adaptions west of Lake Turkana, Kenya. In J. D. Clark & S. A. Brandt (Eds.), From hunters to farmers (pp. 206–211). Berkeley: University of Califormia Press.Google Scholar
  74. Robbins, L. H. (2006). Lake Turkana archaeology: The Holocene. Ethnohistory, 53, 71–93.CrossRefGoogle Scholar
  75. Robbins, L. H., Campbell, A. C., Murphey, M. L., Brook, G. A., Srivastava, P., & Badenhorst, S. (2005). The advent of herding in southern Africa: Early AMS dates on domestic livestock from the Kalahari Desert. Current Anthropology, 46, 671–677.CrossRefGoogle Scholar
  76. Ruddiman, W. F. (2000). Earth’s climate, past and future. New York: W.H. Freeman and Co..Google Scholar
  77. Sadr, K. (2008). Invisible herders? The archaeology of Khoekhoe pastoralists. Southern African Humanities, 20, 179–203.Google Scholar
  78. Sealy, J., & Yates, R. (1994). The chronology of the introduction of pastoralism to the Cape, South Africa. Antiquity, 69, 58–67.CrossRefGoogle Scholar
  79. Smith, A. B. (1992). Origins and spread of pastoralism in Africa. Annual Review of Anthropology, 21, 125–141.CrossRefGoogle Scholar
  80. Smith, A. B. (2005). African herders: Emergence of pastoral traditions. Walnut Creek: Alta Mira Press.Google Scholar
  81. Street, F. A., & Grove, A. T. (1979). Global maps of lake level fluctuations since 30,000 BP. Quaternary Research, 12, 83–118.CrossRefGoogle Scholar
  82. Street-Perrott, F. A., & Harrison, S. P. (1983). Lake levels and climate reconstruction. In A. D. Hecht (Ed.), Paleoclimate data and modeling (pp. 291–340). New York: J. Wiley and Sons.Google Scholar
  83. Street-Perrott, F. A., & Roberts, N. (1983). Fluctuations in closed-basin lakes as an indicator of past atmospheric circulation patterns. In F. A. Street-Perrott, M. Beran, & R. A. S. Ratcliffe (Eds.), Variations in the global water budget (pp. 331–345). Oxford: Reidel Dordrecht.CrossRefGoogle Scholar
  84. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., & Beer, J. (2002). Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science, 298, 589–593.CrossRefGoogle Scholar
  85. Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., & Seager, R. (2013). Multidecadal variability in East Africa hydroclimate controlled by the Indian Ocean. Nature, 493, 389–392.CrossRefGoogle Scholar
  86. Vandenberghe, D., De Corte, F., Buylaert, J.-P., Kučera, J., Van den haute, P. (2008). On the internal radioactivity in quartz. Radiation Measurements, 43(2-6), 771–775.Google Scholar
  87. Verschuren, D., Laird, K. R., & Cumming, B. F. (2000). Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403, 410–414.CrossRefGoogle Scholar
  88. Wendorf, F., & Schild, R. (2001). Holocene settlement of the Egyptian Sahara: The archaeology of Nabia Playa. New York: Plenum.CrossRefGoogle Scholar
  89. Wright, D. K., Forman, S. L., Kiura, P., Bloszies, C., & Beyin, A. (2015). Lakeside view: Sociocultural responses to changing water levels of Lake Turkana, Kenya. African Archaeological Review, 32, 335–367.CrossRefGoogle Scholar
  90. Yellen, J. E., & Harpending, H. C. (1972). Hunter-gatherer populations and archaeological inference. World Archaeology, 4, 244–253.CrossRefGoogle Scholar
  91. Yuretich, R. F. (1979). Modern sediments and sedimentary processes in Lake Rudolf (Lake Turkana) eastern Rift Valley, Kenya. Sedimentology, 26, 313–331.CrossRefGoogle Scholar
  92. Yuretich, R. F., & Cerling, T. E. (1983). Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake. Geochimica et Cosmochimica Acta, 47, 1099–1109.CrossRefGoogle Scholar
  93. Zeder, M. A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. PNAS, 105, 11597–11604.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gail M. Ashley
    • 1
  • E. K. Ndiema
    • 2
    • 3
  • J. Q. G. Spencer
    • 4
  • J. W. K. Harris
    • 2
  • P. W. Kiura
    • 3
  • L. Dibble
    • 2
  • A. Du
    • 2
    • 5
  • P. T. Lordan
    • 1
  1. 1.Earth and Planetary SciencesRutgers UniversityPiscatawayUSA
  2. 2.AnthropologyRutgers UniversityNew BrunswickUSA
  3. 3.Archaeology SectionNational Museums of KenyaNairobiKenya
  4. 4.Department of GeologyKansas State UniversityManhattanUSA
  5. 5.Center for Advanced Study of Human PaleobiologyGeorge Washington UniversityWashingtonUSA

Personalised recommendations