African Archaeological Review

, Volume 33, Issue 3, pp 251–263 | Cite as

An Early Pleistocene Phytolith Record from Wonderwerk Cave, Northern Cape, South Africa

  • Lloyd RossouwEmail author
Original Article


Grass silica short cell phytoliths were sampled from the four lowermost archaeological strata in excavation 1 at Wonderwerk Cave and offer an independent record of climatic change during an episode of Early Stone Age hominin occupation at the cave. Linked to differences in growing season temperature and the geographic distribution of C3 and C4 grasses in southern Africa, fossil grass phytoliths were used to trace palaeoenvironmental shifts at the site. The results suggest that Early Pleistocene environmental conditions at the cave fluctuated: between wetter and drier summer–rainfall growing conditions (C4) towards the end of the Olduvai subchron and the beginning of the subsequent interval of reversed polarity, to mostly dry and cooler winter–rainfall growing conditions (C3), that continued throughout the interval. It ended with a shift towards increased summer rainfall aridity at around one million years ago. The fluctuation between markedly wetter and drier C4 conditions at the cave (NADP-me grass types vs. NAD-me grass types) does not support the premise that the expansion of C4 grasslands was always coupled with increased aridity.


Early Pleistocene Early Stone Age Phytoliths Palaeoclimate Southern Africa 


Les phytolithes récoltés dans les quatre plus anciens niveaux du site archéologique de la grotte de Wonderwerk (Excavation 1), offrent des données indépendantes concernant le changement climatique de l’occupation humaine du Paléolithique inférieur de la grotte. Soumis aux différences de température saisonnière et à la répartition géographique des graminées en C3 et C4 d’Afrique australe, les phytolithes des plantes fossiles ont servi à reconstituer les changements paléo-environnementaux du site. Nos résultats démontrent qu’au Pléistocène ancien, l’environnement de la grotte se modifie: les conditions de croissance (en C4) liée aux précipitations estivales, fluctuent entre humidité et sécheresse à la fin de l’Oldoway subchron et au début de l’intervalle de polarité inversée qui suit. Elles deviennent sèches et plus froides avec les précipitations hivernales (en C3) tout au long de l’intervalle, et aboutissent à une augmentation de l’aridité liée aux précipitations estivales il y a environ un million d’années. A Wonderwerk, les variations entre des conditions en C4 nettement plus humides et plus sèches (type de prairie NADP-me versus NAD-me) contredisent la thèse d’une expansion des prairies en C4 exclusivement associée à un accroissement de l’aridité.



I am grateful to Michael Chazan and Liora Horwitz for providing access to WWC and for their encouragement and assistance. A sampling and analysis permit issued by the South African Heritage Resources Agency provided access to the soil samples analyzed for this study. I would also like to acknowledge the invaluable contribution of Louis Scott to this project through his continuing support and counsel. I thank the reviewers for critically reviewing the paper and for providing helpful comments.

Compliance with Ethical Standards


The study was funded through the research budget of the Archaeology Department at National Museum Bloemfontein, South Africa.

Conflict of Interest

The author declares that he has no conflict of interest.


  1. Acocks, J. H. P. (1988). Veld types of South Africa. Memoirs of the Botanical Survey of South Africa 40. Pretoria: National Botanical Institute.Google Scholar
  2. Albert, R. M., & Marean, C. W. (2012). The exploitation of plant resources by early Homo sapiens: The phytolith record from Pinnacle Point 13B Cave, South Africa. Geoarchaeology: An International Journal, 27, 363–384.CrossRefGoogle Scholar
  3. Beaumont, P. B. (1990). Wonderwerk Cave. In P. B. Beaumont & D. Morris (Eds.), Guide to the archaeological sites in the Northern Cape (pp. 101–134). Kimberley: McGregor Museum.Google Scholar
  4. Berna, F., Goldberg, P., Horwitz, L., Brink, J. S., Holt, S., Bamford, M., et al. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences, 109(20), E1215–E1220.CrossRefGoogle Scholar
  5. Brink, J., Holt, S., & Horwitz, L. K. (2016). The Oldowan and early Acheulean mammalian fauna of Wonderwerk Cave (Northern Cape Province, South Africa). African Archaeological Review, 33(3) .Google Scholar
  6. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 152–157.CrossRefGoogle Scholar
  7. Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., et al. (2008). Radiometric dating of the Earlier Stone Age sequence in excavation I at Wonderwerk Cave, South Africa: Preliminary results. Journal of Human Evolution, 55, 1–11.CrossRefGoogle Scholar
  8. Chazan, M., Bamford, M. K., Berna, F., Brink, J. S., Fernandez-Jalvo, Y., Goldberg, P., et al. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution, 63(6), 859–866.CrossRefGoogle Scholar
  9. Cordova, C. E. (2013). C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quaternary International, 287, 121–140.CrossRefGoogle Scholar
  10. Cordova, C. E., & Scott, L. (2010). The potential of Poaceae, Cyperaceae and Restionaceae phytoliths to reflect past environmental conditions in South Africa. Palaeontologia Africana, 30, 107–134.Google Scholar
  11. De Menocal, P. B. (2004). African climate change and faunal evolution during the Pliocene-Pleistocene. Earth and Planetary Science Letters, 220, 3–24.CrossRefGoogle Scholar
  12. Deacon, H. J. (1995). Two Late Pleistocene-Holocene archaeological depositories from the Southern Cape, South Africa. The South African Archaeological Bulletin, 50(162), 121–131.CrossRefGoogle Scholar
  13. DeMenocal, P. B. (1995). Plio-Pleistocene African climate. Science, 270, 53–59.CrossRefGoogle Scholar
  14. Ehleringer, J. R., & Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics, 24, 411–439.CrossRefGoogle Scholar
  15. Ehleringer, J. R., Sage, R. F., Flanagan, L. B., & Pearcy, R. W. (1991). Climate change and the evolution of climate change. Trends in Ecology & Evolution, 6, 95–99.CrossRefGoogle Scholar
  16. Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112, 285–299.CrossRefGoogle Scholar
  17. Ellis, R. P. (1979). A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia, 12(4), 641–671.Google Scholar
  18. Ellis, R. P. (1987). A review of comparative leaf blade anatomy in the systematics of the Poaceae: The past twenty five years. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 3–10). Washington D.C.: Smithsonian Institution Press.Google Scholar
  19. Ellis, R. P., Vogel, J. C., & Fuls, A. (1980). Photosynthetic pathways and the geographical distribution of grasses in southwest Africa/Namibia. South African Journal of Science, 76, 307–314.Google Scholar
  20. Fredlund, G. G., & Tieszen, L. T. (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21, 321–335.CrossRefGoogle Scholar
  21. Fredlund, G. G., & Tieszen, L. T. (1997). Calibrating grass phytolith assemblages in climatic terms: Application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 199–211.CrossRefGoogle Scholar
  22. Gibbs Russell, G. E. (1988). Distribution of subfamilies and tribes of Poaceae in southern Africa. Monographs in Systematic Botany, Missouri Botanical Gardens, 25, 555–566.Google Scholar
  23. Gibss Russell, G. E., Watson, L., Koekemoer, M., Smook, L., Barker, N. P., Anderson, H. M., et al. (1990). Grasses of Southern Africa. Memoirs of the Botanical Survey of South Africa 58. Pretoria: National Botanical Institute.Google Scholar
  24. Goldberg, P., Berna, F., & Chazan, M. (2015). Deposition and diagenesis in the Earlier Stone Age of Wonderwerk Cave, excavation 1, South Africa. African Archaeological Review, 32(4), 613–643.CrossRefGoogle Scholar
  25. Goldblatt, P., & Manning, J. C. (2002). Plant diversity of the Cape region of Southern Africa. Annals of the Missouri Botanical Garden, 89, 281–302.CrossRefGoogle Scholar
  26. Grab, S., Scott, L., Rossouw, L., & Meyer, S. (2005). Holocene palaeoenvironments inferred from a sedimentary sequence in the Tsoaing River Basin, western Lesotho. Catena, 61, 49–62.CrossRefGoogle Scholar
  27. Hopley, P. J., Weedon, G. P., Marshall, J. D., Herries, A. I. R., & Latham, A. G. (2007). High and low latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters, 256, 419–432.CrossRefGoogle Scholar
  28. Jones, R. L., & Beavers, A. H. (1963). Some mineralogical and chemical properties of plant opal. Soil Science, 96(3), 375–379.CrossRefGoogle Scholar
  29. Madella, M., Alexandre, A., & Ball, T. (2005). International code for phytolith nomenclature 1.0. Annals of Botany, 96, 253–260.CrossRefGoogle Scholar
  30. Matmon, A., Ron, H., Chazan, M., Porat, N., & Horwitz, L. K. (2012). Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave. Geological Society of America Bulletin, 124, 611–625.CrossRefGoogle Scholar
  31. Matmon, A., Hidy, A. J., Vainer, S., Crouvi, O., Fink, D., Erel, Y., et al. (2015). New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation. Quaternary Research, 84(1), 118–132.CrossRefGoogle Scholar
  32. McLean, B., & Scott, L. (1999). Phytoliths in sediments of the Pretoria Saltpan and their potential as indicators of environmental history at the site. In T. C. Partridge (Ed.), Tswaing-investigations into the origin, age and palaeoenvironments of the Pretoria Saltpan (pp. 167–171). Pretoria: Council for Geosciences.Google Scholar
  33. Mucina, L., & Rutherford, M. C. (Eds.) (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitizia 19. Pretoria: South African National Biodiversity Institute.Google Scholar
  34. Mulholland, S. C. (1989). Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. Journal of Archaeological Science, 16, 489–511.CrossRefGoogle Scholar
  35. Nörström, E., Scott, L., Partridge, T. C., Risberg, J., & Holmgren, K. (2009). Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene-Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 240–258.CrossRefGoogle Scholar
  36. Pearsall, D. M. (1982). Phytoliths analysis: Applications of a new palaeoethnobotanical technique in archaeology. American Anthropologist, 84, 862–871.CrossRefGoogle Scholar
  37. Piperno, D. R. (1988). Phytolith analysis: An archaeological and geological perspective. London: Academic Press.Google Scholar
  38. Piperno, D. R. (2006). Phytoliths. A comprehensive guide for archaeologists and palaeoecologists. New York: Altamira Press.Google Scholar
  39. Raymo, M. E., Lisiecki, L. E., & Nisancioglu, K. H. (2006). Plio-Pleistocene ice volume, Antarctic climate, and the global d18O record. Science, 313, 492–495.CrossRefGoogle Scholar
  40. Rossouw, L. (2009). The application of fossil grass-phytolith analysis in the reconstruction of late Cainozoic environments in the South African interior. Unpublished Ph.D. dissertation, University of the Free State.Google Scholar
  41. Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 201–216). New York: Springer.CrossRefGoogle Scholar
  42. Rossouw, L., Stynder, D. D., & Haarhof, P. (2009). Evidence for opal phytolith preservation in the Langebaanweg ‘E’ Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science, 105, 223–227.Google Scholar
  43. Rovner, I. (1971). Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, 343–359.CrossRefGoogle Scholar
  44. Rovner, I. (1983). Plant phytolith analysis: Major advances in archaeobotanical research. Advances in Archaeological Method and Theory, 6, 225–266.Google Scholar
  45. Rovner, I. (1988). Macro- and micro-ecological reconstruction using plant opal phytolith data from archaeological sediments. Geoarchaeology, 3(2), 155–163.CrossRefGoogle Scholar
  46. Rutherford, M. C., & Westphall, R. H. (1994). Biomes of Southern Africa: An objective categorization. Memoirs of the Botanical Survey of South Africa, 63. Pretoria: National Botanical Institute.Google Scholar
  47. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161, 341–370.CrossRefGoogle Scholar
  48. Sage, R. F., & Monson, R. K. (1999). The taxonomic distribution of C4-photosynthesis. In R. F. Sage & R. K. Monson (Eds.), C4 plant biology (pp. 551–581). San Diego: Academic Press.CrossRefGoogle Scholar
  49. Scherer, R. P., Bohaty, S. M., Dunbar, R. B., Esper, O., Flores, J.-A., Gersonde, R., et al. (2008). Antarctic records of precession-paced insolation-driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters, 35(3), 1944–8007.CrossRefGoogle Scholar
  50. Schulze, E. D., Ellis, R., Schulze, W., Trimborn, P. & Ziegler, H. (1996). Diversity, metabolic types and  13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106: 352--369.Google Scholar
  51. Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, southern Kalahari (South Africa). Quaternary Research, 28, 144–156.CrossRefGoogle Scholar
  52. Scott, L., & Rossouw, L. (2005). Reassessment of botanical evidence for palaeoenvironments at Florisbad, South Africa. The South African Archaeological Bulletin, 60, 96–102.Google Scholar
  53. Statsoft_Inc (2013). STATISTICA Version 12.0 (data analysis software system). Statsoft Inc., Tulsa, Oklahoma.
  54. Twiss, P. C., Suess, E. & Smith, R. M. (1969). Morphological classification of grass phytoliths. Proceedings of the Soil Science Society of America 33, 109–115.Google Scholar
  55. Van Zinderen Bakker, E. M. (1976). The evolution of late Quaternary paleoclimates of Southern Africa. Palaeontologia Africana, 9, 160–202.Google Scholar
  56. Vogel, J. C., Fuls, A., & Ellis, R. P. (1978). The geographical distribution of Krantz grasses in South Africa. South African Journal of Science, 74, 209–215.Google Scholar
  57. Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F., & Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 1388–1391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ArchaeologyNational MuseumBloemfonteinSouth Africa
  2. 2.Department of Plant SciencesUniversity of The Free StateBloemfonteinSouth Africa
  3. 3.The Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations