African Archaeological Review

, Volume 33, Issue 2, pp 183–203 | Cite as

Human Responses to Climatic Variation in the Namib Desert During the Last 1,000 Years

  • John KinahanEmail author
Original Article


Radiocarbon dates for camelthorn trees in the Namib Desert reflect marked variation in rainfall during the last 1,000 years. These records and other proxy climate data indicate a loose teleconnection with the southern African climatic record, especially for regionwide episodes of dry conditions resulting from extreme El Niño events. However, archaeological evidence of hunter-gatherer and nomadic pastoralist occupation does not mirror the climate record by indicating that the desert was only inhabited during periods of favourable rainfall. It points instead to a specialized strategy which allowed continuous occupation of the Namib Desert despite extreme fluctuations in rainfall, by combining the use of primary resource areas with opportunistic use of secondary, ephemeral resources in an alternating density-dependent and density-independent dynamic.


Namib Desert Climate proxy Density-dependence/independence Hunter-gatherers Pastoralists 


Des datations radiocarbone effectuées sur les arbres camelthorn dans le Désert du Namib soulignent des variations marquées du taux de précipitation au cours des milles dernières années. Ces datations, ainsi que d’autres données relatives au climat, sont globalement cohérentes avec l’enregistrement climatique de l’Afrique australe, en particulier avec les épisodes interrégionaux de sécheresse dus aux évènements El Niño. Toutefois, les vestiges archéologiques des occupations de chasseurs-cueilleurs et de pasteurs nomades ne s’accordent pas avec les données climatiques en indiquant une fréquentation du Désert limitée aux périodes de pluie plus favorables. Ils démontrent au contraire une stratégie spécialisée permettant l’occupation continue du Désert du Namib, malgré les fluctuations extrêmes des précipitations. Cela est rendu possible grâce à l’exploitation combinée de zones de ressources primaires et à l’exploitation opportuniste de ressources secondaires éphémères, selon une dynamique alternant dépendance ou indépendance à la densité des ressources disponibles.



I am greatly indebted to Norman Green, formerly Swakop Uranium (Pty) Ltd., for his support in the dating of camelthorn trees in the Khan River. I am further indebted to Peter Breunig, University of Frankfurt; Jayson Orton of the Archaeological Contracts Office ACO; Michelle Cameron of the Phenotypic Adaptability; to the Variation and Evolution Research Group PAVE, University of Cambridge; and to the late John Vogel, CSIR Pretoria, for the use of unpublished research results. Research reported in this paper was carried out under permits issued by the National Heritage Council of Namibia (Permit 11/2002; 1/2006; 5/2007; 2/2008; 2/2009) and the Ministry of Environment and Tourism (Permit 606/2002).

Compliance with Ethical Standards


The author is an independent scholar and no funding was received for this research.

Conflict of Interest

The author declares that he has no conflict of interest.


  1. Barnard, A. (1992). Hunters and herders of southern Africa: A comparative ethnography of the Khoisan peoples. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Bollig, M. (1997). Risk and risk minimization among Himba pastoralists in northwestern Namibia. Nomadic Peoples, 1, 66–87.CrossRefGoogle Scholar
  3. Brain, C. K., & Brain, V. (1977). Microfaunal remains from Mirabib: Some evidence of palaeoecological changes in the Namib. Madoqua, 10(4), 285–293.Google Scholar
  4. Breunig, P. (2003). Der Brandberg—Untersuchungen zur Besiedlungsgeschichte eines Hochgebirges in Namibia. Afrika Praehistorica 17. Köln: Heinrich Barth Institut.Google Scholar
  5. Brooks, S., & Suchey, J. M. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evolution, 5, 227–238.CrossRefGoogle Scholar
  6. Brummit, R. K. (2004). Report of the Committee for Spermatophyta: 55 Proposal 1584 on Acacia. Taxon, 53(2), 826–829.CrossRefGoogle Scholar
  7. Budack, K. F. R. (1977). The ≠ Aonin or Topnaar of the lower !Khuiseb River and the sea. Khoisan Linguistic Studies, 3, 1–42.Google Scholar
  8. Chase, B., & Meadows, M. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Science Reviews, 84, 103–138.CrossRefGoogle Scholar
  9. Curtis, B. A., & Mannheimer, C. (2005). Tree atlas of Namibia. Windhoek: National Botanical Research Institute.Google Scholar
  10. DeAngelis, D. L., & Waterhouse, J. C. (1987). Equilibrium and non-equilibrium concepts in ecological models. Ecological Monographs, 57, 1–21.CrossRefGoogle Scholar
  11. Estes, R. D. (1991). The behaviour guide to African mammals. Berkeley: University of California Press.Google Scholar
  12. Fairall, N., Vermeulen, P. J., & Van der Merwe, N. (1986). A general model of population growth in the hyrax Procavia capensis. Ecological Modelling, 34(1, 2), 115–132.CrossRefGoogle Scholar
  13. Fox, F., & Norwood Young, M. (1982). Food from the veld. Cape Town: Delta.Google Scholar
  14. Freundlich, J. C., Schwabedissen, H., & Wendt, W. E. (1980). Köln radiocarbon measurements II. Radiocarbon, 22(1), 68–81.Google Scholar
  15. Holmgren, K., Lee-Thorp, J. A., Cooper, G. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., & Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25-thousand years in southern Africa. Quaternary Science Reviews, 22, 2311–2326.CrossRefGoogle Scholar
  16. Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Riemer, P. J., Riemer, R. W., Turney, C. S. M., & Zimmerman, S. R. H. (2013). SHCAL13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon, 55(4), 1889–1903.CrossRefGoogle Scholar
  17. Huffman, T. N. (1996). Archaeological evidence for climatic change during the last 2000 years in southern Africa. Quaternary International, 33, 55–60.CrossRefGoogle Scholar
  18. Huffman, T. N. (2010). Intensive El Niño and the Iron Age of south-eastern Africa. Journal of Archaeological Science, 37(10), 2572–2586.CrossRefGoogle Scholar
  19. Huntley, B. J. (Ed.). (1985). The Kuiseb environment: The development of a monitoring baseline. Pretoria: South African National Scientific Programmes Report No. 106.Google Scholar
  20. Kinahan, J. (1986). The archaeological structure of pastoral production in the Central Namib Desert. In A. B. Smith & M. Hall (Eds.), Prehistoric pastoralism in southern Africa (pp. 69-82). Goodwin Series 5. Cape Town: South African Archaeological Society.Google Scholar
  21. Kinahan, J. (1990). Four thousand years at the Spitzkoppe: Changes in settlement and landuse on the edge of the Namib Desert. Cimbebasia, 12, 1–14.Google Scholar
  22. Kinahan, J. (1999). Towards an archaeology of mimesis and rainmaking in the rock art of Namibia. In P. Ucko & R. Layton (Eds.), The archaeology and anthropology of landscape (pp. 336–357). London: Routledge.Google Scholar
  23. Kinahan, J. (2001). Pastoral nomads of the central Namib Desert: The people history forgot. Windhoek: Namibia Archaeological Trust.Google Scholar
  24. Kinahan, J. (2005). The late Holocene human ecology of the Namib Desert. In M. Smith & P. Hesse (Eds.), 23 degrees south: Archaeology and environmental history of the Southern Desert (pp. 120–131). Canberra: National Museum of Australia.Google Scholar
  25. Kinahan, J. (2008). Archaeological reconnaissance of EPL 3516 and 3518. Quaternary ResearchServices unpublished report No. 93. Windhoek.Google Scholar
  26. Kinahan, J. (2013). The use of skeletal and complementary evidence to estimate human stature and identify the presence of women in the recent archaeological record of the Namib Desert. South African Archaeological Bulletin, 68, 72–78.Google Scholar
  27. Kinahan, J. H. A. (2000). Cattle for beads: The archaeology of historical contact and trade on the Namib coast. Studies in African Archaeology 17. Uppsala: Department of Archaeology and Ancient History.Google Scholar
  28. Kinahan, J., & Kinahan, J. H. A. (2003). Excavation of a late Holocene cave deposit in the southern Namib Desert, Namibia. Cimbebasia, 18, 1–10.Google Scholar
  29. Kinahan, J., & Kinahan, J. H. A. (2006). Preliminary report on the late Holocene archaeology of the Awasib-Gorrasis basin complex in the southern Namib Desert. In J. Kinahan & J. H. A. Kinahan (Eds.), The African Archaeology Network: Research in progress (pp. 1-14). Studies in the African Past 5. Dar es Salaam: Dar es Salaam University Press Ltd.Google Scholar
  30. Kinahan, J., Pallett, J., Vogel, J., Ward, J., & Lindeque, M. (1991). The occurrence and dating of elephant tracks in the silt deposits of the lower !Khuiseb River, Namibia. Cimbebasia, 13, 37–44.Google Scholar
  31. Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O., & van der Bank, M. (2013). Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botanical Journal of the Linnean Society, 172(4), 500–523.CrossRefGoogle Scholar
  32. Lancaster, N. (1996). Desert environments. In W. M. Adams, A. S. Goudie, & A. R. Orme (Eds.), The physical geography of Africa (pp. 211–237). Oxford: Oxford University Press.Google Scholar
  33. Lee-Thorp, J. A., Holmgren, K., Lauritzen, S.-E., Linge, H., Moberg, A., Partridge, T. C., Stevenson, C., & Tyson, P. D. (2001). Rapid climatic shifts in the southern African interior throughout the mid to late Holocene. Geophysical Research Letters, 28(23), 4507–4510.CrossRefGoogle Scholar
  34. McGinnies, W. G. (1979). Description and structure of arid ecosystems: General description of desert areas. In D. W. Goodall, R. A. Perry, & K. M. W. Howes (Eds.), Arid land ecosystems: Structure, functioning and management. Cambridge: Cambridge University Press.Google Scholar
  35. Mendelsohn, J., Jarvis, A., Roberts, C., & Robertson, T. (Eds.). (2002). Atlas of Namibia: A portrait of the land and its people. Cape Town: David Philip.Google Scholar
  36. Mitchell, P. (2002). The archaeology of southern Africa. Cambridge: Cambridge University Press.Google Scholar
  37. Nicholson, S. E., & Entekhabi, D. (1986). The quasi-periodic behaviour of rainfall variability in Africa and its relationship to the Southern Oscillation. Archives for Meteorology, Geophysics, and Bioclimatology, Series A, 34, 311–348.CrossRefGoogle Scholar
  38. Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecological Systematics, 4, 25–51.CrossRefGoogle Scholar
  39. Olszewski, J. (2000). Brandberg climatic considerations. In A. H. Kirk-Spriggs & E. Marais (Eds.), DâuresBiodiversity of the Brandberg Massif, Namibia. Cimbebasia Memoir 9 (pp. 39–48).Google Scholar
  40. Orton, J. (2012). Late Holocene archaeology in Namaqualand, South Africa: Hunter-gatherers and herders in a semi-arid environment. Unpublished Ph.D. Dissertation, University of Oxford.Google Scholar
  41. Pennington, R. (2001). Hunter-gatherer demography. In C. Panter-Brick, R. Layton, & P. Rowley-Conwy (Eds.), Hunter-gatherers: An interdisciplinary perspective (pp. 170–204). Cambridge: Cambridge University Press.Google Scholar
  42. Pfeiffer, S. (2013). Population dynamics in the southern African Holocene: Human burials from the west coast. In A. Jerardino, A. Malan, & D. Braun (Eds.), The archaeology of the west coast of South Africa (pp.143-154). Oxford: BAR International Series 2526.Google Scholar
  43. Richter, J. (1984). Messum I: A Later Stone Age pattern of mobility in the Namib Desert. Cimbebasia, B4(1), 1–12.Google Scholar
  44. Seymour, C., & Milton, S. (2003). A collation and overview of research information on Acacia erioloba (camelthorn) and identification of relevant research gaps to inform protection of the species. Contract No. 2003/089. Pretoria: Department of Water Affairs and Forestry.Google Scholar
  45. Sievers, C. (1984). Test excavations at Rosh Pinah Shelter, southern Namibia. Cimbebasia, B4(3), 29–40.Google Scholar
  46. Smithers, R. (1971). The mammals of Botswana. Museum Memoir, National Museum of Rhodesia 4.Google Scholar
  47. Steenkamp, C. J., Vogel, J. C., Fuls, A., van Rooyen, N., & van Rooyen, M. W. (2008). Age determination of Acacia erioloba trees in the Kalahari. Journal of Arid Environments, 4, 302–313.CrossRefGoogle Scholar
  48. Stuiver, M., & Reimer, P. J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215–230.Google Scholar
  49. Sullivan, S. (1999). Folk and formal, local and national—Damara knowledge and community conservation in southern Kunene, Namibia. Cimbebasia, 15, 1–28.Google Scholar
  50. Tyson, P. D., & Lindesay, J. A. (1992). The climate of the last 2000 years in southern Africa. The Holocene, 2, 271–278.CrossRefGoogle Scholar
  51. Tyson, P. D., Karlén, W., Holmgren, K., & Heiss, G. A. (2000). The Little Ice Age and medieval warming in South Africa. South African Journal of Science, 96, 121–126.Google Scholar
  52. Vandermeer, J. H., & Goldberg, D. E. (2013). Population ecology: First principles (2nd ed.). Princeton: Princeton University Press.Google Scholar
  53. Vogel, J. C. (2003). The age of dead trees at Sossus and Tsondab Vleis, Namibia. Cimbebasia, 18, 247–251.Google Scholar
  54. Vogel, J. C., & Visser, E. (1981). Pretoria radiocarbon dates II. Radiocarbon, 23(1), 43–80.Google Scholar
  55. Vogelsang, R., & Eichhorn, B. (2011). Under the mopane tree: Holocene settlement in northern Namibia. Köln: Heinrich Barth Institut.Google Scholar
  56. Woodborne, S. (2004). A water stress history of an Acacia erioloba (kameeldoring) tree from the Koichab. Unpublished report. Pretoria: Environmentek.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Namib Desert Archaeological SurveyWindhoekNamibia

Personalised recommendations