Advertisement

African Archaeological Review

, Volume 33, Issue 2, pp 99–105 | Cite as

The ‘Sand-Bath’ and Lithic Heat Treatment in the South African Middle Stone Age: Myth or Reality?

  • Patrick SchmidtEmail author
Review Article

Abstract

When heat treatment of silcrete for stone knapping was first discovered in the South African Middle Stone Age (MSA), the procedure used for it was suggested to be similar to the one used for heat treatment of finer rocks in other parts of the world: slow sand-bath heating. This comparison may have been based on published data from the fields of ethnography, experimentation and archaeology, describing sand-bath like structures and processes. In this review, I discuss whether the available data from these three fields indeed justify the suggestions that sand-bath heating was used in the context of MSA silcrete heat treatment. A careful revaluation of the available data shows that, although sand-bath heating is a widely accepted procedure that is documented in other parts of the world, understanding the earliest known cases of heat treatment in the MSA calls for another technical procedure.

Keywords

Heat treatment Ethnoarchaeology Transformative technology Pyrotechnology Silcrete 

Résumé

Lors de la découverte du traitement thermique réalisé sur les silcrètes du Middle Stone Age (MSA) d’Afrique du Sud, l’hypothèse d’un traitement en bain de sable, processus largement utilisé pour la chauffe des silex dans d’autres régions du monde, a été proposée. Cette assimilation repose sur des données issues des recherches en ethnographie, archéologie ou sur des travaux expérimentaux utilisant des structures similaires à des bains de sable. Cet article considère les données publiées dans ces trois domaines et tente d’évaluer si la chauffe en bain de sable a réellement pu être utilisée dans le contexte du MSA d’Afrique du Sud. Les résultats de cette réévaluation montrent que, même si la chauffe en bain de sable est bien documentée et largement acceptée comme une technique répandue dans le monde scientifique, la compréhension des premiers traitements thermiques dans le MSA d’Afrique du Sud doit faire appel à une autre technique de chauffe.

Notes

Acknowledgments

I thank the Deutsche Forschungsgemeinschaft (DFG) for funding my research project Heat Treatment in the South African MSA that made the present paper possible.

Compliance with Ethical Standards

Funding

This study was funded by the Forschungsgemeinschaft (DFG) (Grant Nr: CO 226/25-1, MI 1748/2-1, NI 299/25-1).

Conflict of Interest

The author declares that he has no conflict of interest.

References

  1. Akerman, K. (1979). Heat and lithic technology in the Kimberleys, W. A. Archaeology & Physical Anthropology in Oceania, 14, 144–151.Google Scholar
  2. Anderson, D. C. (1978). Aboriginal use of Tongue River silica in northwest Iowa. The Plains Anthropologist, 23, 149–157.Google Scholar
  3. Arthur, K. W. (2010). Feminine knowledge and skill reconsidered: Women and flaked stone tools. American Anthropologist, 112, 228–243.CrossRefGoogle Scholar
  4. Bentsen, S. E. (2013). Controlling the heat: An experimental approach to Middle Stone Age pyrotechnology. South African Archaeological Bulletin, 68, 137–145.Google Scholar
  5. Bordes, F. (1969). Traitement thermique du silex au Solutréen. Bulletin de la Société Préhistorique Française, 66, 197.CrossRefGoogle Scholar
  6. Brown, K., & Marean, C. (2010). Wood fuel availability for heat treatment drives the rise and fall of silcrete as a raw material in the Middle Stone Age of South Africa, Abstracts of the PaleoAnthropology Society 2010 Meetings. PaleoAnthropology, 2010, A0001–A0040.Google Scholar
  7. Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C., & Bernatchez, J. (2009). Fire as an engineering tool of early modern humans. Science, 325, 859–862.CrossRefGoogle Scholar
  8. Burnham, C., Holloway, J., & Davis, N. (1969). Thermodynamic properties of water to 1,000°C and 10,000 bars. Geological Society of America Special Papers, 132, 1–96.CrossRefGoogle Scholar
  9. Clark, J. D., & Khana, G. S. (1989). The site of Khunjhun II, middle Son Valley, and its relevance for the Neolithic of Central India. In J. M. Kenoyer (Ed.), Old problems and new perspectives in the archaeology of South Asia (pp. 29–46). Madison: University of Michigan.Google Scholar
  10. Eriksen, B. V. (1997). Implications of thermal pre-treatment of chert in the German Mesolithic. In R. Schild & Z. Sulgostowska (Eds.), Man and flint, Proceedings of the VII International Flint Symposium, Warszawa-Ostrowiec Swietokrzyski, September 1995 (pp. 325–329). Warsaw: Institute of Archaeology and Ethnology Polish Academy of Sciences.Google Scholar
  11. Flörke, O. W., Köhler-Herbertz, B., Langer, K., & Tönges, I. (1982). Water in microcrystalline quartz of volcanic origin: Agates. Contributions to Mineralogy and Petrology, 80, 324–333.CrossRefGoogle Scholar
  12. Fukuda, J., Peach, C. J., Spiers, C. J., & Nakashima, S. (2009). Electrical impedance measurement of hydrous microcrystalline quartz. Journal of Mineralogical and Petrological Sciences, 104, 176–181.CrossRefGoogle Scholar
  13. Goldschmidt, W. (1951). Nomlaki ethnography. Berkeley: University of California Press.Google Scholar
  14. Graetsch, H., Flörke, O. W., & Miehe, G. (1985). The nature of water in chalcedony and opal-C from Brazilian agate geodes. Physics and Chemistry of Minerals, 12, 300–306.CrossRefGoogle Scholar
  15. Griffiths, D. R., Bergman, C. A., Clayton, C. J., Ohnuma, K., & Robins, G. V. (1987). Experimental investigation of the heat treatment of flint. In G. de G. Sieveking & M. H. Newcomer (Eds.), The human uses of flint and chert (pp. 43–52). Proceedings of the Fourth International Flint Symposium held at Brighton Polytechnic, 10–15 April 1983. Cambridge: Cambridge University Press.Google Scholar
  16. Grinnell, G. B. (1895). The story of the Indian. New York: D. Appleton.Google Scholar
  17. Hester, T. R. (1972). Ethnographic evidence for the thermal alteration of siliceous stone. Tebiwa, 15, 63–65.Google Scholar
  18. Inizan, M. L., & Tixier, J. (2001). L’émergence des arts du feu: Le traitement thermique des roches siliceuses. Paléorient, 26, 23–36.Google Scholar
  19. Kenoyer, J. M., Vidale, M., & Bhan, K. K. (1991). Contemporary stone bead making in Khambhat, India: Patterns of craft specialisation and organisation of production as reflected in the archaeological record. World Archaeology, 23, 45–63.CrossRefGoogle Scholar
  20. Mandeville, M. D. (1973). A consideration of the thermal pretreatment of chert. Plains Anthropologist, 18, 177–202.Google Scholar
  21. Mandeville, M. D., & Flenniken, J. (1974). A comparison of the flaking qualities of Nehawka chert before and after thermal pretreatment. Plains Anthropologist, 19, 146–148.Google Scholar
  22. Mercieca, A. (2000). An experimental study of heat fracturing in silcrete. Australian Archaeology, 51, 40–47.Google Scholar
  23. Mercieca, A., & Hiscock, P. (2008). Experimental insights into alternative strategies of lithic heat treatment. Journal of Archaeological Science, 35, 2634–2639.CrossRefGoogle Scholar
  24. Mourre, V., Villa, P., & Henshilwood, C. S. (2010). Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science, 330, 659–662.CrossRefGoogle Scholar
  25. Patterson, L. W. (1995). Thermal damage of chert. Lithic Technology, 20, 72–80.Google Scholar
  26. Porraz, G., Texier, P.-J., Archer, W., Piboule, M., Rigaud, J.-P., & Tribolo, C. (2013). Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3376–3400.CrossRefGoogle Scholar
  27. Powell, J. W. (1874). Report of the explorations in 1873 of the Colorado of the West and its tributaries. Washington: Govt. print. off.Google Scholar
  28. Schmidt, P. (2014). What causes failure (overheating) during lithic heat treatment? Archaeological and Anthropololgical Sciences, 6, 107–112.CrossRefGoogle Scholar
  29. Schmidt, P., Badou, A., & Fröhlich, F. (2011). Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 552–559.CrossRefGoogle Scholar
  30. Schmidt, P., Masse, S., Laurent, G., Slodczyk, A., Le Bourhis, E., & Perrenoud, C. (2012). Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. Journal of Archaeological Science, 39, 135–144.CrossRefGoogle Scholar
  31. Schmidt, P., Porraz, G., Slodczyk, A., Bellot-Gurlet, L., Archer, W., & Miller, C. E. (2013). Heat treatment in the South African Middle Stone Age: Temperature induced transformations of silcrete and their technological implications. Journal of Archaeological Science, 40, 3519–3531.CrossRefGoogle Scholar
  32. Schmidt, P., Paris, C., & Bellot-Gurlet, L. (2015a). The investment in time needed for heat treatment of flint and chert. Archaeological and Anthropological Sciences. doi: 10.1007/s12520-015-0259-y.Google Scholar
  33. Schmidt, P., Porraz, G., Bellot-Gurlet, L., February, E., Ligouis, B., & Paris, C. (2015b). A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. Journal of Human Evolution, 85, 22–34.CrossRefGoogle Scholar
  34. Schumacher, P. (1877). Methods of making stone weapons. US Geographical and Geological Survey Bulletin, 3, 547–549.Google Scholar
  35. Shippee, J. M. (1963). Was flint annealed before flaking? Plains Anthropologist, 8, 271–272.Google Scholar
  36. Voegelin, E. W. (1938). Tübatulabal ethnography. Berkeley: University of California Press.Google Scholar
  37. Wadley, L. (2013). Recognizing complex cognition through innovative technology in Stone Age and Palaeolithic sites. Cambridge Archaeological Journal, 23, 163–183.CrossRefGoogle Scholar
  38. Wadley, L., & Prinsloo, L. C. (2014). Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age. Journal of Human Evolution, 70, 49–60.CrossRefGoogle Scholar
  39. Wilke, P. J., Flenniken, J., & Ozbun, T. L. (1991). Clovis technology at the Anzick site, Montana. Journal of California and Great Basin Anthropology, 13, 242–272.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Prehistory and Quaternary EcologyEberhard Karls University of TübingenTübingenGermany

Personalised recommendations