African Archaeological Review

, Volume 32, Issue 4, pp 839–855 | Cite as

Palynology of Holocene Deposits in Excavation 1 at Wonderwerk Cave, Northern Cape (South Africa)

  • L. ScottEmail author
  • J. Francis Thackeray
Original Article


Wonderwerk Cave, Northern Cape Province (South Africa) is one of few sites in the subcontinent where fossil pollen has been preserved in Holocene cave floor deposits. With the exception of biogenic deposits and stalagmite layers near the cave opening, older material has yielded no pollen. Pollen recorded in previous and new samples from late Pleistocene-Holocene deposits in Excavation 1 at the cave are combined in a calibrated age model based on a selection of published radiocarbon dates. The results confirm patterns observed previously by the late E. M. van Zinderen Bakker, but a new interpretation of the environmental implications and history of the pollen sequence at the site is proposed, viz., dry karroid vegetation in the early Holocene and relatively humid grassy conditions between ca. 5,500 and 4,400 cal yr BP. The results are consistent with those of microfaunal and isotopic studies, and form part of growing proxy evidence for past environmental conditions in the South African interior.


Pollen Cave deposits Kalahari Vegetation Climate change 


Située dans la province du Cap-du-Nord en Afrique du Sud, la grotte de Wonderwerk est un des rares sites du sous-continent à avoir livré des pollens fossiles dans des sols de cavernes datées de l’Holocène. Le matériel plus ancien ne contient des pollens que dans les dépôts biogènes et les couches des stalagmites près de l’ouverture de la grotte. Les pollens enregistrés dans les échantillons anciens et nouveaux prélevés dans les dépôts de la fin du Pléistocène et de l’Holocène de la grotte (Excavation 1) ont été combinés dans un modèle chronologique calibré basé sur une sélection de dates radiocarbones publiées précédemment. Les résultats confirment les tendances observées par feu E. M. van Zinderen Bakker, mais nous proposons une nouvelle interprétation des implications de la séquence de pollens sur l’environnement et l’histoire de l’Holocène du site, à savoir une végétation « karroid » sèche au début de l’Holocène et un milieu herbeux relativement humide entre 5,500 et 4,400 cal BP environ. En accord avec la microfaune et les analyses isotopiques, ces résultats complètent nos connaissances environnementales du Passé de la région centrale d’Afrique du Sud.



The fieldwork and analyses reported here took place on the basis of an agreement with the McGregor Museum (South Africa) concerning access to these collections for members of the project directed by Liora Horwitz and Michael Chazan, who are thanked for involving us in the team for Wonderwerk Cave research and for continued support and encouragement. Peter Beaumont is thanked for providing samples for study during the previous phase of research at the cave, and Lloyd Rossouw for making available the samples he collected for phytolith analysis. Michaela Ecker helped to collect information in connection with radiocarbon dating by previous researchers, and George Brook adjusted the stalagmite chronology. Fieldwork and artifact export of material relating to this research project were undertaken under the terms of permits issued by SAHRA (South African Heritage Resources Agency) to the McGregor Museum and members of the team. This work is based on the research supported by the National Research Foundation of South Africa. Any opinion, finding, and conclusion or recommendation expressed in this material is that of the authors, and the NRF does not accept any liability in this regard.

Supplementary material

10437_2015_9204_MOESM1_ESM.xlsx (18 kb)
ESM 1 (XLSX 17 kb)


  1. Avery, D. M. (1981). Holocene micromammalian faunas from the Northern Cape, South Africa. South African Journal of Science, 77, 265–273.Google Scholar
  2. Bamford, M. K. (2015). Macrobotanical remains from Wonderwerk Cave (Excavation 1), Oldowan to Late Pleistocene (2 Ma to 14 ka BP), South Africa. African Archaeological Review, 32(4), this issue.Google Scholar
  3. Beaumont, P. B. (1990). Wonderwerk Cave. In P. B. Beaumont & D. Morris (Eds.), Guide to the archaeological sites in the Northern Cape (pp. 101–134). Kimberley: McGregor Museum.Google Scholar
  4. Beaumont, P. B. (2004). Wonderwerk Cave. In D. Morris & P. B. Beaumont (Eds.), Archaeology in the Northern Cape: Some key sites (pp. 31–36). Kimberley: McGregor Museum.Google Scholar
  5. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217–228.Google Scholar
  6. Beaumont, P. B., van Zinderen Bakker, E. M., & Vogel, J. C. (1984). Environmental changes since 32 000 BP at Kathu Pan, northern Cape. In: J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the southern hemisphere (pp. 329–338). Rotterdam: Balkema.Google Scholar
  7. Blaauw, M. (2010). Methods and code for ‘classical’ age modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512–518.CrossRefGoogle Scholar
  8. Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457–474.CrossRefGoogle Scholar
  9. Bousman, C. B., Partridge, T. C., Scott, L., Metcalfe, S. E., Vogel, J. C., Seaman, M., & Brink, J. S. (1988). Palaeoenvironmental implications of late Pleistocene and Holocene valley fills in Blydefontein Basin, Noupoort, C. P., South Africa. Palaeoecology of Africa, 19, 43–67.Google Scholar
  10. Brook, G. A., Scott, L., Railsback, B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74(5), 870–884.CrossRefGoogle Scholar
  11. Butzer, K. W. (1984a). Archaeogeology and quaternary environment in the interior of southern Africa. In: R. G. Klein (Ed.), Southern African prehistory and palaeoenvironments (pp. 1–64). Rotterdam: Balkema.Google Scholar
  12. Butzer, K. W. (1984b). Late Quaternary environments in South Africa. In: J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the southern hemisphere (pp. 235–264). Rotterdam: Balkema.Google Scholar
  13. Butzer, K. W., Stuckenrath, R., Bruzewicz, A. J., & Helgren, D. M. (1978). Late Cenozoic paleoclimates of the Ghaap Escarpment, Kalahari margin, South Africa. Quaternary Research, 10, 310–339.CrossRefGoogle Scholar
  14. Butzer, K. W., Fock, G. J., Scott, L., & Stuckenrath, R. (1979a). Dating and context of rock engravings in Southern Africa. Science, 203, 1201–1214.CrossRefGoogle Scholar
  15. Butzer, K. W., Stuckenrath, R., & Vogel, J. C. (1979b). The geo-archaeological sequence of Wonderwerk Cave, South Africa. Calgary: Society of Africanist Archaeologists Meeting Abstracts.Google Scholar
  16. Carriόn, J. S., Munuera, M., Navarro, C., Burjachs, F., Dupre, M., & Walker, M. J. (1999). The palaeoecological potential of pollen records in caves: The case of Mediterranean Spain. Quaternary Science Reviews, 18, 1061–1073.CrossRefGoogle Scholar
  17. Chase, B. M., Meadows, M. E., Carr, A. S., & Reimer, P. J. (2010). Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African monsoon dynamics and the ‘African humid period’. Quaternary Research, 74, 36–45.CrossRefGoogle Scholar
  18. Chazan, M., Avery, M. D., Bamford, M. K., Berna, F., Brink, J., Holt, S., Fernandez-Jalvo, Y., Goldberg, P., Matmon, A., Porat, N., Ron, H., Rossouw, L., Scott, L., & Horwitz, L. K. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution, 63(6), 859–866.CrossRefGoogle Scholar
  19. Chevalier, M., Cheddadi, R., & Chase, B. M. (2014). CREST: Climate REconstruction SofTware. Climate of the Past, 10, 625–663.CrossRefGoogle Scholar
  20. Coetzee, J. A. (1967). Pollen analytical studies in East and Southern Africa. Palaeoecology of Africa, 3, 1–146.Google Scholar
  21. Cooremans, B. (1989). Pollen production in central South Africa. Pollen et Spores, 31, 61–78.Google Scholar
  22. Davis, O. K. (1987). Recent developments in the study of arid lands. Eisodes, 10, 41–42.Google Scholar
  23. Deacon, H. J., Deacon, J., Scholtz, A., Thackeray, J. F., & Brink, J. S. (1984). Correlation of palaeoenvironmental data from the Late Pleistocene and Holocene deposits at Boomplaas cave, Southern Cape. In J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the Southern Hemisphere (pp. 339–351). Rotterdam: Balkema.Google Scholar
  24. Fernandez-Jalvo, Y., Scott, L., & Andrews, P. (2011). Taphonomy in palaeoecological interpretations. Quaternary Science Reviews, 30, 1296–1302.CrossRefGoogle Scholar
  25. Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., & Zimmerman, S. R. J. (2013). SHCal13 Southern Hemisphere calibration, 0–50,000 cal BP. Radiocarbon, 55(4), 1889–1903.CrossRefGoogle Scholar
  26. Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., & Tyson, P. D. (2003). Persistent millennial-scale variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22, 2311–2326.CrossRefGoogle Scholar
  27. Humphreys, A. J. B., & Thackeray, A. I. (1983). Ghaap and Gariep. Later Stone Age studies in the Northern Cape. Cape Town: South African Archaeological Society Monograph No. 2.Google Scholar
  28. Lee-Thorp, J., & Ecker, M. (2015). Holocene environmental change at Wonderwerk Cave, South Africa: Insights from stable light isotopes in ostrich eggshell. African Archaeological Review, 32(4), this issue.Google Scholar
  29. Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K., & Oberhänsli, H. (2014). Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaogeography, Palaoclimatology, Palaeoecology, 402, 125–135.CrossRefGoogle Scholar
  30. Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.Google Scholar
  31. Neumann, F. H., Botha, G. A., & Scott, L. (2014). 18,000 years of grassland evolution in the summer rainfall region of South Africa: Evidence from Mahwaqa mountain, KwaZulu-Natal. Vegetation History and Archeobotany, 23, 665–681.CrossRefGoogle Scholar
  32. Norström, E., Scott, L., Partridge, T., Risberg, J., & Holmgren, K. (2009). Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene-Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 240–258.CrossRefGoogle Scholar
  33. Norström, E., Neumann, F. H., Scott, L., Smittenberg, R. H., Holmstrand, H., Lundqvist, S., Snowball, I., Sundqvist, H. S., Risberg, J., & Bamford, M. (2014). Late Quaternary vegetation dynamics and hydro-climate in the Drakensberg, South Africa. Quaternary Science Reviews, 105, 48–65.CrossRefGoogle Scholar
  34. Rossouw, L. (2009). The application of fossil grass phytoliths in the reconstruction of palaeoenvironments in the central interior of Southern Africa. PhD thesis, Department of Plant Sciences, Univ. of the Free State, Bloemfontein, South Africa.Google Scholar
  35. Rutherford, M. C., & Westfall, R. H. (1986). Biomes of southern Africa—An objective categorization. Memoirs of the Botanical Survey of South Africa, 54, 1–98.Google Scholar
  36. Rutherford, M. C., Mucina, L., Lötter, C., Bredenkamp, G. J., Smit, J. H. L., Scott-Shaw, C. R., Hoare, D. B., Goodman, P. S., Bezuidenhout, H., Scott, L., Ellis, F., Powrie, L. W., Siebert, F., Mostert, T. H., Henning, B. J., Venter, C. E., Camp, K. G. T., Siebert, S. J., Matthews, W. S., Burrows, J. E., Dobson, L., van Rooyen, N., Schmidt, E., Winter, P. J. P., du Preez, P. J., Ward, R. A., Williamson, S. W., & Hurter, P. J. H. (2006). Savanna Biome 9. In L. Mucina & C. M. Rutherford (Eds.), The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19 (pp. 438–539). Pretoria: South African National Biodiversity Institute.Google Scholar
  37. Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., & Pätzold, J. (2011). Forcing of wet phases in southeast Africa over the past 17,000 years. Nature, 480, 509–512.CrossRefGoogle Scholar
  38. Scott, L. (1982a). Late Quaternary fossil pollen grains from the Transvaal, South Africa. Review of Palaeobotany and Palynology, 36, 241–278.CrossRefGoogle Scholar
  39. Scott, L. (1982b). A Late Quaternary pollen record from the Transvaal bushveld, South Africa. Quaternary Research, 17, 339–370.CrossRefGoogle Scholar
  40. Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, Southern Kalahari (S. Africa). Quaternary Research, 28, 144–156.CrossRefGoogle Scholar
  41. Scott, L., & Cooremans, B. (1992). Pollen in recent Procavia (hyrax), Petromus (dassie rat) and bird dung in South Africa. Journal of Biogeography, 19, 205–215.CrossRefGoogle Scholar
  42. Scott, L., Steenkamp, M., & Beaumont, P. B. (1995). Palaeoenvironmental conditions in South Africa at the Pleistocene-Holocene transition. Quaternary Science Reviews, 14(9), 937–947.CrossRefGoogle Scholar
  43. Scott, L., Fernandez-Jalvo, Y., Carrión, J. S., & Brink, J. S. (2003a). Preservation and interpretation of pollen in hyena coprolites: Taphonomical observations from Spain and Southern Africa. Palaeontologia Africana, 39, 83–91.Google Scholar
  44. Scott, L., Holmgren, K., Talma, A. S., Woodborne, S., & Vogel, J. C. (2003b). Age interpretation of the Wonderkrater spring sediments and vegetation change in the savanna biome, Limpopo Province, South Africa. South African Journal of Science, 99, 484–488.Google Scholar
  45. Scott, L., Bousman, C. B., & Nyakale, M. (2005). Holocene pollen from swamp, cave and hyrax dung deposits at Blydefontein (Kikvorsberge), Karoo, South Africa. Quaternary International, 129, 49–59.CrossRefGoogle Scholar
  46. Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E., & Metwally, A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26,000 years in Southern Africa. Quaternary Science Reviews, 32, 100–118.CrossRefGoogle Scholar
  47. Scott, L., Avery, D. M., Bamford, M. K., Berna, F., Brink, J. S., Brook, G. A, Chazan, M., Ecker, M., Fernandez-Jalvo, Y., Goldberg, P., Lee-Thorp, J., Rossouw, L., Thackeray, F. J., & Horwitz, L. K. (2014). The Late Pleistocene and Holocene palaeoenvironmental context of Wonderwerk Cave in the southern Kalahari, South Africa. Geophysical Research Abstracts, 16 (oral presentation).Google Scholar
  48. Sonzogni, C., Bard, E., & Rostek, F. (1998). Tropical sea-surface temperatures during the last glacial period: A view based on alkenones in Indian Ocean sediments. Quaternary Science Reviews, 17, 1185–1201.CrossRefGoogle Scholar
  49. Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13, 614–621.Google Scholar
  50. Thackeray, A. I. (1981). The Holocene cultural sequence in the northern Cape Province, South Africa. PhD. dissertation, Yale University.Google Scholar
  51. Thackeray, J. F. (1984). Man, animals and extinctions: The analysis of Holocene faunal remains from Wonderwerk Cave, South Africa. PhD. dissertation, Yale University.Google Scholar
  52. Thackeray, J. F. (1987). Late Quaternary environmental changes inferred from small mammalian fauna, southern Africa. Climatic Change, 10, 285–305.CrossRefGoogle Scholar
  53. Thackeray, J. F. (2015). Faunal remains from Holocene deposits, Excavation 1, Wonderwerk Cave, South Africa. African Archaeological Review, 32(4), this issue.Google Scholar
  54. Thackeray, A. I., Thackeray, J. F., Beaumont, P. B., & Vogel, J. C. (1981). Dated rock engravings from Wonderwerk Cave, South Africa. Science, 214, 64–67.CrossRefGoogle Scholar
  55. Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M. E., Scott, L., Carr, A. S., Smith, G. F., & Chase, B. M. (2013). Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: Implications for the long term dynamics of the Intertropical Convergence Zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 575–587.CrossRefGoogle Scholar
  56. Van Zinderen Bakker, E. M. (1982). Pollen analytical studies of the Wonderwerk Cave, South Africa. Pollen et Spores, 24, 235–250.Google Scholar
  57. Vogel, J. C., Fuls, A., & Visser, E. (1986). Pretoria radiocarbon dates III. Radiocarbon, 28(3), 1133–1172.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations