African Archaeological Review

, Volume 32, Issue 4, pp 813–838 | Cite as

Macrobotanical Remains from Wonderwerk Cave (Excavation 1), Oldowan to Late Pleistocene (2 Ma to 14 ka bp), South Africa

  • Marion K. Bamford
Original Article


Wonderwerk Cave in the Northern Cape Province of South Africa has a record of occupation spanning some 2 million years, comprising flora, fauna and cultural artifacts and, therefore, potentially, has the most complete macrobotanical record associated with hominin/human activities. The flora is described here for the lower levels: the Oldowan Stratum 12 (ca. 2 Ma) to the Late Pleistocene Stratum 5 (ca. 14 ka). The older material includes calcified roots, leaf litter of small dicotyledonous twigs and seeds, grass and sedge culms. From Stratum 5, there are about 134 pieces of charcoal that have been identified to eight woody species. Assuming the firewood was of local origin, the climate during the latest Pleistocene would have been slightly more mesic than today’s arid to semi-arid climate.


Macrobotanical remains Sedges Grasses Seeds Charcoal Fire-sticks 


La grotte de Wonderwerk, située dans la province du Cap-Nord, en Afrique du Sud, a une occupation qui s’étend sur près de 2 millions d’années, attestée par la flore, la faune et des artefacts culturels. Les données botaniques associées à des activités d’homininés et/ou d’humains forment l’ensemble jusqua le plus complet découvert à ce jour. La flore décrite ici provient des couches inférieures, du niveau 12 (env. 2 Mio. au niveau 5 (env. 14 k). Le matériel le plus ancien comprend des détritus de feuilles, des brindilles et des graines de petites dicotylédones, des racines calcifiées, des tiges d’herbes et de laîches. Dans le niveau 5, les 134 fragments de charbon de bois appartiennent à huit espèces ligneuses. En assumant que le bois de feu est d’origine locale, le climat de la fin du Pléistocène serait légèrement plus mésoïque que le climat aride à semi-aride d’aujourd’hui.



Fieldwork at Wonderwerk was supported by the Canadian SSHRC and a Wenner-Gren Foundation grant to M. Chazan. I thank the Palaeontological Scientific Trust (PAST, South Africa) for funding to establish the modern charcoal and plant reference collection at the ESI. Funding for equipment is gratefully acknowledged from the University of the Witwatersrand, National Research Foundation (NRF), Department of Science and Technology (DST) and Mellon Foundation. Liora Horwitz and Michael Chazan invited me to join the project for which I am also grateful. The fieldwork and analyses reported on here took place on the basis of an agreement with the McGregor Museum (South Africa) concerning access to these collections for members of the project directed by M. Chazan and L. K. Horwitz. Fieldwork and artifact export of material relating to this research project were undertaken under the terms of permits issued by SAHRA (South African Heritage Resources Agency) to the McGregor Museum and members of the team.


  1. Allott, L. F. (2004). Changing environments in Oxygen Isotope Stage 3: Reconstructions using archaeological charcoal from Sibudu Cave. South African Journal of Science, 110, 179–184.Google Scholar
  2. Allott, L. F. (2006). Archaeological charcoal as a window on palaeovegetation and wood-use during the Middle Stone Age at Sibudu Cave. Southern African Humanities, 18, 173–201.Google Scholar
  3. Avery, D. M. (1981). Holocene micromammalian faunas from the Northern Cape Province, South Africa. South African Journal of Science, 77, 265–273.Google Scholar
  4. Avery, D. M. (2007). Pleistocene micromammals from Wonderwerk Cave, South Africa: Practical issues. Journal of Archaeological Science, 34, 613–625.CrossRefGoogle Scholar
  5. Bamford, M. (1999). Pliocene fossil woods from an early hominid cave deposit, Sterkfontein, South Africa. South African Journal of Science, 95, 231–237.Google Scholar
  6. Bamford, M. K., & Henderson, Z. L. (2003). A reassessment of the wooden fragment from Florisbad, South Africa. Journal of Archaeological Science, 30, 637–650.CrossRefGoogle Scholar
  7. Beaumont, P. B. (1990). Wonderwerk Cave. In P. Beaumont & D. Morris (Eds.), Guide to archaeological sites in the Northern Cape (pp. 101–124). Kimberley: McGregor Museum.Google Scholar
  8. Beaumont, P. (2004). Wonderwerk Cave. In P. Beaumont & D. Morris (Eds.), Archaeology in the Northern Cape: Some key sites (pp. 31–36). Kimberley: McGregor Museum.Google Scholar
  9. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217–228.Google Scholar
  10. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., & Chazan, M. (2012). Microstratigraphic evidence for in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape Province, South Africa. Proceedings of the National Academy of Sciences Plus, 9(20), E1215–E1220.CrossRefGoogle Scholar
  11. Brook, G. A., Scott, L., Railsback, L. B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74, 870–884.CrossRefGoogle Scholar
  12. Camp, C. L. (1948). University of California African Expedition— Southern section. Science, 108, 550–552.CrossRefGoogle Scholar
  13. Cartwright, C. R. (2013). Identifying the woody resources of Diepkloof Rock Shelter (South Africa) using scanning electron microscopy of the MSA wood charcoal assemblages. Journal of Archaeological Science, 40, 3463–3474.CrossRefGoogle Scholar
  14. Cartwright, C. R., & Parkington, J. E. (1997). The wood charcoal assemblages from Elands Bay Cave: Principles, procedures and preliminary interpretation. South African Archaeological Bulletin, 52, 59–72.CrossRefGoogle Scholar
  15. Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, A., & Horwitz, L. K. (2008). Radiometric dating of the Earlier Stone Age sequence in Excavation 1 at Wonderwerk Cave, South Africa: Preliminary results. Journal of Human Evolution, 55, 1–11.CrossRefGoogle Scholar
  16. Chazan, M., Avery, D. M., Bamford, M. K., Berna, F., Brink, J., Holt, S., Fernandez-Jalvo, Y., Goldberg, P., Matmon, A., Porat, N., Ron, H., Rossouw, L., Scott, L., & Horwitz, L. K. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution, 63, 859–866.CrossRefGoogle Scholar
  17. Coates-Palgrave, M. (2002). Palgrave’s Trees of Southern Africa (3rd ed.). Cape Town: Struik Publishers.Google Scholar
  18. Cowling, R. M., Cartright, C. R., Parkington, J. E., & Allsopp, J. C. (1999). Fossil wood charcoal assemblages from Elands Bay Cave, South Africa: Implications for Late Quaternary vegetation and climates in the winter rainfall Fynbos biome. Journal of Biogeography, 26, 367–378.CrossRefGoogle Scholar
  19. d’Errico, F., Backwell, L., Villa, P., Degano, I., Luceiko, L., Bamford, M., Higham, T., Colombini, M. P., & Beaumont, P. (2012). Early evidence of San material culture represented by organic artefacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences Plus, 109(33), 13214–13219.CrossRefGoogle Scholar
  20. Deacon, H. J., Scholtz, A., & Daitz, L. D. (1983). Fossil charcoals as a source of palaeoecological information in the Fynbos region. In H. J. Deacon, Q. B. Hendy, & J. J. N. Lambrechts (Eds.), Fynbos paleoecology: A preliminary synthesis (pp. 174–182), South African National Scientific Programme Report 75. Pretoria: CSIR.Google Scholar
  21. Deacon, H. J., Deacon, J., Scholtz, A., Thackeray, J. F., Brink, J. S., & Vogel, J. C. (1984). Correlation of palaeoenvironmental data from the Late Pleistocene and Holocene deposits at Boomplaas Cave, Southern Cape. In J. Vogel (Ed.), Late Cainozoic Palaeoclimates of the Southern Hemisphere (pp. 339–351). Rotterdam: Balkema.Google Scholar
  22. Esterhuysen, A. B. (1996). Palaeoenvironmental reconstruction from Pleistocene to present: An analysis of charcoal from sites in the eastern Free State and Lesotho. University of the Witwatersrand, Johannesburg: Unpublished MA dissertation.Google Scholar
  23. Esterhuysen, A. B., Mitchell, P. J., & Thackeray, J. F. (1999). Climatic change across the Pleistocene/Holocene boundary in the Caledon River, southern Africa: Results of a factor analysis of charcoal assemblages. Southern African Field Archaeology, 8, 28–34.Google Scholar
  24. Greenfield, H. J., Fowler, K. D., & van Schalkwyk, L. O. (2005). Where are the gardens? Early Iron Age horticulture in the Thukela River Basin of South Africa. World Archaeology, 37, 307–328.CrossRefGoogle Scholar
  25. Grün, R., Brink, J. S., Spooner, N. A., Taylor, L., Stringer, C. B., Franciscus, R. G., & Murray, A. S. (1996). Direct dating of Florisbad hominid. Nature, 582, 500–501.CrossRefGoogle Scholar
  26. Guérin, G., Murray, A. S., Jain, M., Thomsen, K. J., & Mercier, N. (2013). How confident are we in the chronology of the transition between Howieson’s Poort and Still Bay? Journal of Human Evolution, 64, 314–317.CrossRefGoogle Scholar
  27. Henderson, Z. (2001). The integrity of the Middle Stone Age horizon at Florisbad, South Africa. Navorsinge van die Nasionale Museum, Bloemfontein, 17(2), 25–52.Google Scholar
  28. Herries, A. I. R., & Shaw, J. (2011). Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: Implications for the age of the hominin fossils and stone tool industries. Journal of Human Evolution, 60, 523–539.CrossRefGoogle Scholar
  29. Herries, A. I. R., Curnoe, D., & Adams, J. W. (2009). A multi-disciplinary seriation of early Homo and Paranthropus bearing palaeocaves in southern Africa. Quaternary International, 202, 14–28.CrossRefGoogle Scholar
  30. Humphreys, A. J. B., & Thackeray, A. I. (1983). Ghaap and Gariep. Later Stone Age studies in the northern Cape. Cape Town: The South African Archaeological Society.Google Scholar
  31. IAWA Committee (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin, n.s. 10, 219-332. InsideWood (accessed 2011 – May 2013)
  32. Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R., & Wadlely, L. (2008). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322, 733–735.CrossRefGoogle Scholar
  33. Karkanas, P., & Goldberg, P. (2010). Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology. Journal of Human Evolution, 59, 256–273.CrossRefGoogle Scholar
  34. Kent, L. E. (Ed.). (1980). Stratigraphy of South Africa. B. Part 1. Geological Survey of South Africa Handbook (pp. 1–690). South Africa: Government Printer.Google Scholar
  35. Lee-Thorp, J. A., & Ecker, M. (2015). Holocene environmental change at Wonderwerk Cave, South Africa: Insights from stable light isotopes in ostrich eggshell. African Archaeological Review, 32(4).Google Scholar
  36. Low, A. B., & Rebelo, A. G. (Eds.). (1998). Vegetation of South Africa, Lesotho and Swaziland. Pretoria: Department of Environmental Affairs and Tourism.Google Scholar
  37. Malan, B. D., & Cooke, H. B. S. (1941). A preliminary account of the Wonderwerk Cave, Kuruman District, South Africa. South African Journal of Science, 37, 300–312.Google Scholar
  38. Marston, J. (2009). Modeling wood acquisition strategies from archaeological charcoal remains. Journal of Archaeological Science, 36, 2192–2200.CrossRefGoogle Scholar
  39. Matmon, A., Ron, H., Chazan, M., Porat, N., & Horwitz, L. K. (2011). Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave, South Africa. Geological Society of America Bulletin, 124, 611–625.CrossRefGoogle Scholar
  40. Maud, R. R., & Orr, W. N. (1975). Aspects of post-Karoo geology in the Richards Bay area. Transactions of the Geological Society of South Africa, 78, 101–109.Google Scholar
  41. McCarthy, T. S., Ellery, W. N., Backwell, L., Marren, P., de Klerk, B., Tooth, S., Brandt, D., & Woodborne, S. (2010). The character, origin and palaeoenvironmental significance of the Wonderkrater spring mound, South Africa. Journal of African Earth Sciences, 58, 115–126.CrossRefGoogle Scholar
  42. Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, 1-808. Pretoria: South African National Biodiversity Institute.Google Scholar
  43. Oschadleus, H. D., & Vogel, J. C. (1996). Radiometric date for the Port Durnford peat and development of yellow-wood forest along the South African east coast. South African Journal of Science, 92, 43–45.Google Scholar
  44. Prior, J., & Price Williams, D. (1985). An investigation of climatic change in the Holocene epoch using archaeological charcoal from Swaziland, South Africa. Journal of Archaeological Science, 12, 457–475.CrossRefGoogle Scholar
  45. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.CrossRefGoogle Scholar
  46. Rüther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., Matmon, A., & Horwitz, L. K. (2009). Laser scanning for conservation and research of African cultural heritage sites: The case study of Wonderwerk Cave, South Africa. Journal of Archaeological Science, 36, 1847–1856.CrossRefGoogle Scholar
  47. Scholtz, A. (1986). Palynological and palaeobotanical studies in the Southern Cape. University of Stellenbosch, Stellenbosch: Unpublished MA dissertation.Google Scholar
  48. Schulze, B. R. (1984). Climate of South Africa. Part 8: General survey. WB 28 (5th ed.). Pretoria: South Africa Weather Bureau.Google Scholar
  49. Scott, L. (1982). A Late Quaternary pollen record from the Transvaal bushveld, South Africa. Quaternary Research, 17, 339–370.CrossRefGoogle Scholar
  50. Scott, L. (1999a). The vegetation history and climate in the Savanna Biome, South Africa, since 190 000 ka: A comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quaternary International, 57–58, 215–223.CrossRefGoogle Scholar
  51. Scott, L. (1999b). Palynological analysis of the Pretoria Saltpan (Tswaing Crater) sediments and vegetation history in the bushveld savanna biome, South Africa. In T. C. Partridge (Ed.), Investigations into the Origin, Age and Palaeoenvironments of the Pretoria Saltpan (pp. 143–166). Pretoria: Council for Geosciences.Google Scholar
  52. Scott, L. (2002). Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeography Palaeoclimatology Palaeoecology, 177, 47–57.CrossRefGoogle Scholar
  53. Scott, L., & Rossouw, L. (2005). Reassessment of botanical evidence for palaeoenvironments at Florisbad, South Africa. South African Archaeological Bulletin, 60, 96–102.Google Scholar
  54. Scott, L., & Vogel, J. C. (1983). Late Quaternary pollen record from the Transvaal Highveld, South Africa. South African Journal of Science, 79, 266–272.Google Scholar
  55. Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norstrom, E., & Metwally, A. A. (2012). Terrestrial fossil pollen evidence of climate change during the last 26 thousand years in southern Africa. Quaternary Science Review, 32, 100–118.CrossRefGoogle Scholar
  56. Scott, L., Thackeray, J. F., & Brook, G. (2015). Palynology of Holocene deposits in excavation 1 at Wonderwerk cave, Northen Cape, (South Africa). African Archaeological Review, 32(4).Google Scholar
  57. Thackeray, A. I. (1983). Archaeological sites in the Kuruman Hills area. In A. J. B. Humphries & A. I. Thackeray (Eds.), Ghaap and Gariep. Later Stone Age studies in the Northern Cape (pp. 33–47). Cape Town: The South African Archaeological Society.Google Scholar
  58. Thackeray, J. F., & Lee-Thorp, J. A. (1992). Isotopica analysis of equid teeth from Wonderwerk Cave, northern Cape Province, South Africa. Palaeogeography, Palaeoclimate, Palaeoecology, 99, 141–150.CrossRefGoogle Scholar
  59. Thackeray, A. I., Thackeray, J. F., Beaumont, P. B., & Vogel, J. C. (1981). Dated rock engravings from Wonderwerk Cave, South Africa. Science, 214, 64–67.CrossRefGoogle Scholar
  60. Tribolo, C., Mercier, N., Valladas, H., Joron, J.-L., Guibert, P., Lefrais, Y., Selo, M., Texier, P.-J., Rigaud, J.-P., Porraz, G., Poggenpoel, C., Parkington, J., Texier, J.-P., & Lenoble, A. (2009). Thermoluminescence dating of a Stillbay–Howiesons Poort sequence at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 36, 730–739.CrossRefGoogle Scholar
  61. Tribolo, C., Mercier, N., Douville, E., Joron, J.-L., Reyss, J.-L., Rufer, D., Cantin, N., Lefrais, Y., Miller, C. E., Porraz, G., Parkington, J., Rigaud, J.-P., & Texier, P.-J. (2013). OSL and TL dating of the Middle Stone Age sequence at Diepkloof Rock Shelter (South Africa): A clarification. Journal of Archaeological Science, 40, 3401–3411.CrossRefGoogle Scholar
  62. Van Wyk, B., & van Wyk, P. (1997). Field guide to trees of Southern Africa. Cape Town: Struik Publishers.Google Scholar
  63. Van Zinderen Bakker, E. M. (1982). Pollen analytical studies of the Wonderwerk Cave, South Africa. Pollen et Spores, 26, 235–250.Google Scholar
  64. Vogel, J. C., Fuls, A., & Ellis, R. P. (1978). The geographical distribution of Kranz grasses in South Africa. South African Journal of Science, 74, 209–215.Google Scholar
  65. Vogel, J. C., Fuls, A., & Visser, E. (1986). Pretoria radiocarbon dates III. Radiocarbon, 28, 1133–1172.Google Scholar
  66. Wadley, L., Esterhuysen, A., & Jeanneret, C. (1992). Vegetation changes in the eastern Orange Free State: The Holocene and later Pleistocene evidence from charcoal studies. South African Journal of Science, 88, 558–563.Google Scholar
  67. Wadley, L., Sievers, C., Bamford, M., Miller, C., Goldberg, P., & Berna, F. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 1388–1391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Evolutionary Studies Institute and School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations