African Archaeological Review

, Volume 32, Issue 4, pp 613–643 | Cite as

Deposition and Diagenesis in the Earlier Stone Age of Wonderwerk Cave, Excavation 1, South Africa

  • Paul Goldberg
  • Francesco Berna
  • Michael Chazan
Original Article


The Earlier Stone Age (ESA) sequence of Excavation 1 at Wonderwerk Cave is the longest stratified sedimentary sequence associated with hominin occupation in Southern Africa. This sequence has been constrained chronologically on the basis of cosmogenic burial age and paleomagnetic dating. Geoarchaeological analysis of two exposed profiles covering strata 12–9 that combine micromorphology and FTIR on the ESA deposits shows shifts in depositional sources, transport, and diagenesis. This analysis provides insight into the paleoenvironmental context of hominin occupation and suggests that during part of the stratigraphic sequence, there was an ephemeral body of water in proximity to the cave. These results provide the basis for ongoing geoarchaeological research on the landscape outside the cave and other components of the cave deposits.


Geoarchaeology Wonderwerk Cave South Africa Paleolithic Site formation Micromorphology FTIR 


La séquence d’Earlier Stone Age de la Grotte de Wonderwerk est la séquence sédimentaire stratifée la plus longue associée à l’occupation par des hominins dan la régione sud-Africaine. Le chronologie absolue de cette séquence est etabli sur la base de datation par Cosmogenic Burial Age et par le paléomagnétisme. L’analyse géoarchéologique de deux profiles correspondent aux Niveaux Archéologiques 12–9 se servir d’un combination de micromorphologie et FTIR montre un changement dans les sources du dépôt, le transport, et le diagenèse. Cette analyse donne un aperçu sur le contexte paléoenvironmental de l’occupation par des hominins et suggère qu’il y avait eu un plan d’eau ephemère au proximité de la grotte. Ces resultats fourni la base pour un recherche en cours sur le paysage a l’extérieur de la grotte et sur les autres components des dépôts du grotte.



We would like to acknowledge a number of funding bodies for their financial support in carrying out this research: the Canada Social Sciences and Humanities Research Council (Grant #430-2013-000546); US National Science Foundation Grants #0917739 and #0551927; and the Canadian Social Sciences and Humanities Research Council Grant # 410-2007-2330 and 410-2003-1348. Fieldwork was carried out under permit from the South African Heritage Resources Agency (permits # 80/04/06/014/51 and Case ID 63, Permit ID 159). In addition, we would like to thank several individuals for their collaborative efforts, including David Morris, Ari Matmon, Naomi Porat, Heinz Ruther, Leon Jacobson, Francis Thackeray, and Liora Kolska Horwitz. We would also like to recognize that this research builds on the excavations of Peter Beaumont at Wonderwerk Cave.


  1. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217–228.Google Scholar
  2. Berna, F. (2010). Bone alteration and diagenesis. In G. Artioli (Ed.), Scientific methods and cultural heritage. An introduction to the application of materials science to archaeometry and conservation science (pp. 364–367). Oxford: Oxford University Press.Google Scholar
  3. Berna, F., & Goldberg, P. (2008). Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Sciences, 56, 107–121.CrossRefGoogle Scholar
  4. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., et al. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape Province, South Africa. PNAS, 109(20), 7593–7594.Google Scholar
  5. Beukes, N. J. (1987). Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basin sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa. Sedimentary Geology, 54, 1–46.CrossRefGoogle Scholar
  6. Beukes, N. J., & Klein, C. (1990). Geochemistry and sedimentology of a facies transition—from microbanded to granular iron-formation—in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Research, 47, 99–139.CrossRefGoogle Scholar
  7. Brook, G. A., Scott, L., Railsback, L. B., & Goddard, E. A. (2010). A 35ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74(7), 870–884.CrossRefGoogle Scholar
  8. Butzer, K. W. (1984a). Archaeogeology and Quaternary environment in the interior of southern Africa. In R. G. Klein (Ed.), Southern African prehistory and paleoenvironments (Vol. 1–64). Rotterdam: Balkema.Google Scholar
  9. Butzer, K. W. (1984b). Late Quaternary environments in South Africa. In J. C. Vogel (Ed.), Late Cainozoic Palaeoclimates of the Southern Hemisphere (pp. 235–264). Rotterdam: Balkema.Google Scholar
  10. Byrd, B. F. (Ed.). (1996). Camping in the dunes: Archaeological and geological investigations of late Holocene settlements west of Rogers Dry Lake. Encinitas: ASM Affiliates; Prepared for Army Corps of Engineers.Google Scholar
  11. Canti, M. G. (2003). Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena, 54(3), 339–361.CrossRefGoogle Scholar
  12. Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, A., et al. (2008). Radiometric dating of the earlier stone age sequence in Excavation I at Wonderwerk Cave, South Africa: Preliminary results. Journal of Human Evolution, 1–11.Google Scholar
  13. Chazan, M., Avery, D. M., Bamford, M. K., Berna, F., Brink, J., Holt, S., et al. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution, 63, 859–866.CrossRefGoogle Scholar
  14. Eriksson, P.G., Schweitzer, J.K., Bosch, P.J.A., Schereiber, U.M., van Deventer, J.L., Hatton, C.J., (1993). The Transvaal sequence: An overview. Journal of African Earth Sciences, 16, 25–51.Google Scholar
  15. Fitzsimmons, K. E., Stern, N., & Murray-Wallace, C. V. (2014). Depositional history and archaeology of the central Lake Mungo lunette, Willandra Lakes, southeast Australia. Journal of Archaeological Science, 41, 349–364.CrossRefGoogle Scholar
  16. Flügel, E. (2004). Microfacies of carbonate rocks: Analysis, interpretation and application. Berlin: Springer.Google Scholar
  17. Goldberg, P., & Berna, F. (2010). Micromorphology and context. Quaternary International, 214(1–2), 56–62. doi: 10.1016/j.quaint.2009.10.023.CrossRefGoogle Scholar
  18. Goldberg, P., & Macphail, R. I. (2012). Gorham’s Cave sediment micromorphology. In R. N. E. Barton, C. B. Stringer, & J. C. Finlayson (Eds.), Neanderthals in context (pp. 50–61). Oxford: Oxbow Books.Google Scholar
  19. Goldberg, P., Schiegl, S., Meligne, K., Dayton, C., & Conard, N. J. (2003). Micromorphology and site formation at Hohle Fels Cave, Swabian Jura, Germany. Eiszeitalter und Gegenwart, 53, 1–25.Google Scholar
  20. Goldberg, P., Miller, C. E., Schiegl, S., Berna, F., Ligouis, B., Conard, N. J., et al. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1, 95–122.CrossRefGoogle Scholar
  21. Karkanas, P., & Goldberg, P. (2010). Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology. Journal of Human Evolution, 59, 256–273.CrossRefGoogle Scholar
  22. Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27, 915–929.CrossRefGoogle Scholar
  23. Karkanas, P., Rigaud, J.-P., Simek, J. F., Albert, R. M., & Weiner, S. (2002). Ash bones and guano: A study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. Journal of Archaeological Science, 29, 721–732.CrossRefGoogle Scholar
  24. Macphail, R. I., & Goldberg, P. (2003). Gough’s Cave, Cheddar, Somerset: Microstratigraphy of the Late Pleistocene/earliest Holocene sediments. Bulletin Natural History Museum London (Geol.), 58(supp), 51–58.Google Scholar
  25. Macphail, R. I., & Goldberg, P. (2010). Archaeological materials. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of micromorphological features of soils and Regoliths (pp. 599–622). Amsterdam: Elsevier.Google Scholar
  26. Matmon, A., Ron, H., Chazan, M., Porat, N., & Horwitz, L. K. (2012). Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave. Geological Society of America Bulletin, 124, 611–625.CrossRefGoogle Scholar
  27. Matthews, W., French, C. A. I., Lawrence, T., Cutler, D. F., & Jones, M. K. (1997). Microstratigraphic traces of site formation processes and human activities. World Archaeology, 29(2), 281–308.CrossRefGoogle Scholar
  28. Miskovsky, J. C. (1989). New data about Holocene sedimentation in Atlas areas of North Africa, after the Makhfamane stratotype, Western High Atlas chain, Morocco. Une coupure climatique nette à l’Holocene moyen dans les domaines atlasiques d’Afrique du Nord: Étude du stratotype de Makhfamane (Haut-Atlas occidental, Maroc), 309(1), 103–108.Google Scholar
  29. Shahack-Gross, R., Berna, F., Karkanas, P., & Weiner, S. (2004). Bat guano and preservation of archaeological remains in cave sites. Journal of Archaeological Science, 31(9), 1259–1272. doi: 10.1016/j.jas.2004.02.004.CrossRefGoogle Scholar
  30. Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin sections. Madison: Soil Science Society of America.Google Scholar
  31. Stoops, G., Marcelino, V., & Mees, F. (Eds.). (2010). Interpretation of micromorphological features of soils and Regoliths. Amsterdam: Elesevier.Google Scholar
  32. Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. New York: Cambridge University Press.CrossRefGoogle Scholar
  33. Weiner, S., Schiegl, S., Goldberg, P., & Bar-Yosef, O. (1995). Mineral assemblages in Kebara and Hayonim Caves, Israel: Excavation strategies, bone preservation, and wood ash remnants. Israel Journal of Chemistry, 35, 143–154.CrossRefGoogle Scholar
  34. Weiner, S., Goldberg, P., & Bar-Yosef, O. (2002). Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. Journal of Archaeological Science, 29, 1289–1308.CrossRefGoogle Scholar
  35. White, W. B. (1988). Geomorphology and hydrology of karst terrains. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Paul Goldberg
    • 1
    • 2
    • 3
  • Francesco Berna
    • 1
    • 3
  • Michael Chazan
    • 4
  1. 1.Department of ArchaeologySimon Fraser UniversityBurnabyCanada
  2. 2.Institute for Archaeological SciencesEberhard-Karls-Universität TübingenTübingenGermany
  3. 3.Department of ArchaeologyBoston UniversityBostonUSA
  4. 4.Department of AnthropologyUniversity of TorontoTorontoCanada

Personalised recommendations