Advertisement

African Archaeological Review

, Volume 32, Issue 2, pp 301–333 | Cite as

Holocene Supra-Regional Environmental Changes as Trigger for Major Socio-Cultural Processes in Northeastern Africa and the Sahara

Original Article

Abstract

This contribution presents the environmental changes that occurred over the last ten millennia in a vast region of North Africa, encompassing the Central Sahara, the Greater Nile Valley and the Horn of Africa. These areas are of particular significance in the continent because of the early socioeconomic transformations that occurred there. An up-to-date review of palaeoclimate research is proposed with the aim to highlight new theoretical approaches, analytical methods and innovative techniques. Results of recent research on high-resolution and well-dated palaeoenvironmental archives for proxy data have been used to understand the climatic variability at different scales of resolution. We trace the regional changes in Holocene palaeohydrology, mostly regulated by monsoonal precipitation, and their effects on the landscape, and highlight the occurrence of short-term climatic events, arid or humid that may have had disruptive consequences on human communities. The contribution also discusses the cultural dynamics that occurred in those regions because the latter were exploited by hunter/gatherer groups from the onset of the Holocene until historical times. A reconstruction of patterns of human adjustment to climatic variability is here presented, focusing on key processes such as the origin of food production, social complexity and power, and the rise and fall of complex polities and interregional networks.

Keywords

Palaeoclimates Cultural dynamics Holocene Northeastern Africa Sahara 

Résumé

Cette contribution présente les changements environnementaux survenus au cours des dix derniers millénaires dans une vaste région de l'Afrique du Nord, englobant le Sahara Central, la vallée du Nile, et la Corne de l'Afrique. Ces zones sont d'une importance particulière, car ce sont là que les processus de développement socio-économiques se sont initialement produits sur le continent. Une revue à jour de la recherche paléoclimatique est proposée dans le but de mettre en évidence de nouvelles approches théoriques, méthodes analytiques et techniques innovantes. Les résultats de recherches récentes sur des archives paléoenvironnementales à haute résolution et bien datées ont été utilisées pour comprendre la variabilité climatique à différentes échelles, traçant les changements régionaux dans la paléohydrologie de l’Holocène, principalement régis par les précipitations de mousson, et leurs effets sur le paysage et soulignant l'apparition de courts événements climatiques, aride ou humide, qui ont pu avoir des conséquences perturbatrices sur les communautés humaines. Cette contribution aborde également les dynamiques culturelles qui ont eu lieu dans ces régions depuis qu'elles ont été exploitées par des groupes de chasseurs/cueilleurs du début de l'Holocène aux périodes historiques. Une reconstruction des schémas d'adaptation humaine aux variations climatiques est présentée ici, en se concentrant sur des processus clés, tels que l'origine de la production alimentaire, la complexité sociale et le pouvoir; ainsi que sur l’essor et la chute de systèmes politiques complexes et de réseaux interrégionaux.

Notes

Acknowledgments

We would like to thank Rod McIntosh for inviting us to participate in this special issue of African Archaeological Review. M.C. Gatto wrote the introduction and the section on cultural changes; A. Zerboni wrote the section on palaeoclimatic reconstruction; both authors contributed to the conclusions. Warm acknowledgments to Martin Williams and Heiko Reimer for constructive comments which greatly improved the quality of the manuscript.

References

  1. Abell, P. I., & Hoelzmann, P. (2000). Holocene palaeoclimates in north-western Sudan: Stable isotope studies on mollusks. Global and Planetary Change, 26, 1–12.Google Scholar
  2. Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., Ayalon, A., Aizenshtat, Z., & Matthews, A. (2009). Climatic variability during the last ~90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Review, 28, 2882–2896.Google Scholar
  3. Anderson, W. (1992). Badarian burials: Evidence of social inequality in Middle Egypt during the Early Predynastic era. Journal of the American Research Center in Egypt, 29, 51–66.Google Scholar
  4. Anderson, D. G., Maasch, K. A., Sandweiss, D. H., & Mayewski, P. A. (2007). Climate and culture change: Exploring Holocene transition. In D. G. Anderson, K. A. Maasch, & D. H. Sandweiss (Eds.), Climate change and cultural dynamics: A global perspective on Mid-Holocene transition (pp. 1–23). San Diego: Academic.Google Scholar
  5. Ariztegui, D., Asioli, A., Lowe, J. J., Trincardi, F., Vigliotti, L., Tamburini, F., Chondrogianni, C., Accorsi, C. A., Bandini Mazzanti, M., Mercuri, A. M., Van der Kaars, S., McKenzie, J. A., & Oldfield, F. (2000). Palaeoclimate and the formation of Sapropel S1: Inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 215–240.Google Scholar
  6. Aumassip, G., & Delibrias, G. (1982-1983). Ages des dépôtsnéolithiques du gisement de Tin Hanakaten (Tassilin’Ajjer). Libyca, 20–21, 207-211.Google Scholar
  7. Baioumy, H., Kayanne, H., & Tada, R. (2011). Record of Holocene aridification (6000-7000 BP) in Egypt (NE Africa): Authigenic carbonate minerals from laminated sediments in Lake Qarun. Quaternary International, 245, 170–177.Google Scholar
  8. Barich, B. E., Lucarini, G., Hamdan, M. A., & Hassan, F. A. (Eds.). (2014). From lake to sand - The archaeology of Farafra Oasis, Western Desert, Egypt. Firenze: Edizioni All'Insegna Giglio.Google Scholar
  9. Barker, P. A., Hurrell, E. R., Leng, M. J., Plessen, B., Wolff, C., Conley, D. J., Keppens, E., Milne, I., Cumming, B. F., Laird, K. R., Kendrick, C. P., Wynn, P. M., & Verschuren, D. (2013). Carbon cycling within an East African lake revealed by the carbon isotope composition of diatom silica: A 25 ka record from Lake Challa, Mt. Kilimanjaro. Quaternary Science Reviews, 66, 55–63.Google Scholar
  10. Barrows, T. T., Williams, M. A. J., Mills, S. C., Duller, G. A. T., Fifield, L. K., Haberlanh, D., Tims, S. G., & Williams, F. M. (2014). A white Nile megalake during the last interglacial period. Geology, 42, 163–166.Google Scholar
  11. Becker, R. E., & Fürst, M. (1991). Sedimentological time markers and groundwater dating: A study of the quaternary evolution of Al Kufrah area. In M. J. Salem & M. N. Belaid (Eds.), The geology of Libya (Vol. V, pp. 2017–2026). Amsterdam: Elsevier.Google Scholar
  12. Bell, B. (1975). Climate and the history of Egypt: The Middle Kingdom. American Journal of Archaeology, 79, 223–269.Google Scholar
  13. Berger, A., & Loutre, M.-F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10, 297–317.Google Scholar
  14. Bobrowski, P., Czekaj-Zastawny, A., Schild, R., & Wendorf F. (2011). Najstarsze kurhany świata. Neolityczny kompleks ceremonialny z Nabta Playa na Pustyni Zachodniej w Egipcie. In H. Kowalewskiej-Marszałek & P. Włodarczaka (Eds.), Kurhany i obrządek pogrzebowy w IV-II tysiącleciu p.n.e., (pp. 77-90). Kraków/Warszawa: Instytut Archeologii i Etnologii Polskiej Akademii Nauk, Instytut Archeologii Uniwersytetu Warszawskiego.Google Scholar
  15. Bobrowski, P., Czekaj-Zastawny, A., & Schild, R. (2014). Gebel el-Muqaddas (Site E-06-4). The early Neolithic tumuli from Nabta Playa (Western Desert, Egypt). In J. R. Anderson & D. A. Welsby (Eds.), The fourth cataract and beyond (pp. 293–301). Peeters: Leuven.Google Scholar
  16. Braconnot, P., Harrison, S., Joussaume, J., Hewitt, C., Kitoh, A., Kutzbach, J., Liu, Z., Otto-Bleisner, B. L., Syktus, J., & Weber, S. L. (2004). Evaluation of coupled ocean-atmosphere simulations of the Mid-Holocene. In R. W. Bartabee, F. Gasse, & C. E. Stieckley (Eds.), Past climate variability through Europe and Africa (pp. 515–533). Dordrecht: Kluwer Academic Publisher.Google Scholar
  17. Brandt, S. A. (1986). The Upper Pleistocene and Early Holocene prehistory of the Horn of Africa. African Archaeological Review, 4, 41–82.Google Scholar
  18. Brandt, S. A. (1988). Early Holocene mortuary practices and hunter-gatherer adaptation in southern Somalia. World Archaeology, 20(1), 40–56.Google Scholar
  19. Breunig, P., & Neumann, K. (2002). From hunters and gatherers to food producers: New archaeological and archaeobotanical evidence from the West African Sahel. In F. A. Hassan (Ed.), Droughts, food and culture: Ecological change and food security in Africa’s later prehistory (pp. 123–155). New York: Kluwer.Google Scholar
  20. Briois, F., Midant-Reynes, B., Marchand, S., Tristant, Y., Wuttmann, M., De Dapper, M., Lesur, J., & Newton, C. (2012). Neolithic occupation of an artesian spring: KS043 in the Kharga Oasis, Egypt. Journal of Field Archaeology, 37(3), 178–191.Google Scholar
  21. Brooks, N. (2006). Cultural responses to aridity in the middle Holocene and increased social complexity. Quaternary International, 151(1), 29–49.Google Scholar
  22. Brooks, N. (2010). Human responses to climatically-driven landscape change and resource scarcity: Learning from the past and planning for the future. In I. P. Martini & W. Chesworth (Eds.), Landscapes and societies (pp. 43–66). New York: Springer.Google Scholar
  23. Brooks, N., di Lernia, S., Drake, N., Chiapello, I., Legrand, M., Moulin, C., & Prospero, J. (2005). The environment-society nexus in the Sahara from prehistoric times to the present day. The Journal of North African Studies, 304, 253–292.Google Scholar
  24. Bubenzer, O., & Riemer, H. (2007). Holocene climatic change and human settlement between the Central Sahara and the Nile Valley: archaeological and geomorphological results. Geoarchaeology, 22(6), 607–620.Google Scholar
  25. Bubenzer, O., & Ritter, M. (2007). From hyperarid to semiarid – actual climatic conditions in northeastern and southwestern Africa. In O. Bubenzer, A. Bolten, & F. Darius (Eds.), Atlas of cultural and environmental change in arid Africa (pp. 18-19). Cologne: Africa Praehistorica 21.Google Scholar
  26. Butzer, K. W. (2012). Collapse, environment and society. Proceedings of the National Academy of Sciences, 109(10), 3632–3639.Google Scholar
  27. Camps, G., Delibrias, G., & Thommeret, J. (1973). Chronologie des civilisations prehistoriques du nord de lie des civilisations prehistorique. Libyca, 21, 65–89.Google Scholar
  28. Cancellieri, E., & di Lernia, S. (2013). Re-entering the central Sahara at the onset of the Holocene: A territorial approach to Early Acacus hunter–gatherers (SW Libya). Quaternary International, 320, 43–62.Google Scholar
  29. Cancellieri, E., Cremaschi, M., Zerboni, A., & di Lernia, S. (2015). Climate, environment and population dynamics in the Pleistocene Sahara: State of the knowledge and a critical assessment of the Acacus and Messak (SW Fezzan, Libya). In B. Stewart & S. Jones (Eds.), Africa from MIS 6–2: population, dynamics and palaeoenvironments. Vertebrate paleobiology and paleontology series. New York: Springer Science.Google Scholar
  30. Casford, J. S. L., Rohling, E. J., Abu-Zied, R. H., Fontanier, C., Jorissen, F. J., Leng, M. J., Schmiedl, G., & Thomson, J. (2003). A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 103–119.Google Scholar
  31. Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X. F., Cruz, F. W., Auler, A. S., Mangini, A., Wang, Y. J., Burns, S. J., & Matter, A. (2009). Timing and structure of the 8 kyr event inferred from 18O records of stalagmites from China, Oman and Brazil. Geology, 37, 1007–1010.Google Scholar
  32. Clark, J. D. (1980). Human populations and cultural adaptations in the Sahara and Nile during prehistoric times. In M. A. J. Williams & H. Faure (Eds.), The Sahara and the Nile: Quaternary environments and prehistoric occupation in northern Africa (pp. pp. 527–pp. 582). Rotterdam: A.A. Balkema.Google Scholar
  33. Clark, J. D. (1984). The domestication process in Northeast Africa: Ecological change and adaptive strategies. In L. Krzyzaniak & M. Kobusiewicz (Eds.), Origin and early development of food-producing cultures in North-Eastern Africa (pp. 25–41). Poznan: Polish Academy of Sciences and Poznan Archaeological Museum.Google Scholar
  34. Cremaschi, M. (2002). Late Pleistocene and Holocene climatic changes in the central Sahara. The case study of the southwestern Fezzan, Libya. In F. A. Hassan (Ed.), Droughts, food and culture: Ecological change and food security in Africa’s later prehistory (pp. 65–81). New York: Kluwer.Google Scholar
  35. Cremaschi, M., & Zerboni, A. (2009). Early to Middle Holocene landscape exploitation in a drying environment: Two case studies compared from the Central Sahara (SW Fezzan, Libya). Comptes Rendus Geoscience, 341, 689–702.Google Scholar
  36. Cremaschi, M., & Zerboni, A. (2011). Human communities in a drying landscape. Holocene climate change and cultural response in the Central Sahara. In I. P. Martini & W. Chestworth (Eds.), Landscape and societies, selected cases (pp. 67–89). New York: Springer.Google Scholar
  37. Cremaschi, M., Pelfini, M., & Santilli, M. (2006). Cupressus dupreziana: A dendroclimatic record for middle late Holocene in the Central Sahara. The Holocene, 16, 293–303.Google Scholar
  38. Cremaschi, M., Zerboni, A., Spötl, C., & Felletti, F. (2010). The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya). An early Holocene palaeoclimate archive in the Central Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology, 287, 81–94.Google Scholar
  39. Curtis, M. (2013). Archaeological evidence for the emergence of food production in the Horn of Africa. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 571–584). Oxford: Oxford University Press.Google Scholar
  40. Debono, F. (1981). Prehistory in the Nile Valley. In J. J. Ki-Zerbo (Ed.), General history of Africa I (pp. 634–655). London/Berkley: Heinemann/University of California/UNESCO.Google Scholar
  41. deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinsky, M. (2000). Abrupt onset and termination of the African humid period: Rapid climate response to gradual insolation forcing. Quaternary Science Reviews, 19, 347–361.Google Scholar
  42. di Lernia, S. (2001). Dismantling dung: Delayed use of food resources among Early Holocene foragers of the Libyan Sahara. Journal of Anthropological Archaeologyi, 20, 408–441.Google Scholar
  43. di Lernia, S. (2002). Dry climatic events and cultural trajectories: Adjusting middle holocene pastoral economy of the libyan Sahara. In F. Hassan (Ed.), Droughts, food and culture (pp. 225–250). New York: Kluwer Academic/Plenum Publisher.Google Scholar
  44. di Lernia, S. (2006). Building monuments, creating identity: Cattle cult as a social response to rapid environmental changes in the Holocene Sahara. Quaternary International, 151, 50–62.Google Scholar
  45. di Lernia, S. (2013). The emergence and spread of herding in North Africa: A critical reappraisal. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 527–540). Oxford: Oxford University Press.Google Scholar
  46. di Lernia, S., & Zampetti, D. (Eds.). (2008). La Memoria dell’arte. Le pitture rupestri dell’Acacus tra passato e futuro. Firenze: All’Insegna del Giglio.Google Scholar
  47. di Lernia, S., Manzi, G., & Merighi, F. (2002). Cultural variability and human trajectories in later prehistory of the Wadi Tanezzuft. In S. di Lernia & G. Manzi (Eds.), Sand, stones, and bones (pp. 281–302). Firenze: Edizioni All’Insegna del Giglio.Google Scholar
  48. di Lernia, S., Mori, L., & Zerboni, A. (2008). Geo-archaeological survey in the Kufra Region (Eastern Sahara, SE Libya). Sahara, 19, 7–26.Google Scholar
  49. di Lernia, S., Tafuri, M. A., Gallinaro, M., Alhaique, F., Balasse, M., Cavorsi, L., Fullagar, P., Mercuri, A. M., Monaco, A., Perego, A., & Zerboni, A. (2013). Inside the ‘African cattle complex’: Animal burials in the Holocene central Sahara. PLoS ONE, 8(2), e56879.Google Scholar
  50. Drake, N. A., El-Haway, A. S., Turner, P., Armitage, S. J., Salem, M. J., White, K. H., & McLaren, S. (2008). Palaeohydrology of the Fazzan Basin and surrounding regions: The last 7 million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 263, 131–145.Google Scholar
  51. Dramis, F., Umer, M., Calderoni, G., & Haile, M. (2003). Holocene climate phase from buried soils in Tigray (northern Ethiopia): Comparison with lake level fluctuations in the main Ethiopian rift. Quaternary Research, 60, 274–283.Google Scholar
  52. Edmunds, W. M., & Wright, E. P. (1979). Groundwater recharge and paleoclimate in the Sirte and Kufra basins, Libya. Journal of Hydrology, 40, 215.Google Scholar
  53. Fattovich, R. (2010). The development of ancient states in the Northern Horn of Africa, c. 3000 BC – AD 1000: An archaeological outline. Journal of World Prehistory, 23, 145–175.Google Scholar
  54. Flohn, H., & Nicholson, S. E. (1980). Climatic fluctuations in the arid belt of the ‘Old World’ since the Last Glacial Maximu; Possible causes and future implications. Palaeoecology of Africa, 12, 3–22.Google Scholar
  55. Flores, D. V. (2003). Funerary sacrifice of animals in the Egyptian Predynastic Period (p. S1153). Oxford: British Archaeological Records.Google Scholar
  56. Gabriel, B., & Kröpelin, S. (1984). Holocene lake deposits in Northwest Sudan. Palaeoecology of Africa, 16, 295–299.Google Scholar
  57. Garcea, E. A. A. (Ed.). (2013). Gobero: The no-return frontier. Archaeology and landscape at the Saharo-Sahelian borderland. Frankfurt: Africa Magna Verlag.Google Scholar
  58. Gasse, F. (1977). Evolution of Lake Abhé. Nature, 256, 42–45.Google Scholar
  59. Gasse, F. (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews, 19, 189–211.Google Scholar
  60. Gasse, F. (2005). Continental palaeohydrology and palaeoclimate during the Holocene. C.R. Geoscience, 337, 79–86.Google Scholar
  61. Gasse, F., & Van Campo, E. (1994). Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth and Planetary Science Letters, 126, 435–456.Google Scholar
  62. Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J., & Williamson, D. (2008). Climatic patterns in Equatorial and Southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews, 27, 2316–2340.Google Scholar
  63. Gatto, M. C. (2006). The Nubian A-Group: A reassessment. Archéonil, 16 – Les Civilizations du Soudan Ancient, Hommage à Francis Geus, pp. 61–76.Google Scholar
  64. Gatto, M. C. (2011). The Nubian pastoral culture as link between Egypt and Africa. In K. Exell (Ed.), Egypt and its African context (pp. 21–29). Oxford: Archaeopress.Google Scholar
  65. Gatto, M. C. (2012a). The Holocene prehistory of the Nubian Eastern Desert. In H. Barnard & B. Duistermaat (Eds.), History of the people of the eastern desert from prehistory to present (pp. 42–57). Los Angeles: UCLA/CIOA Press.Google Scholar
  66. Gatto, M. C. (2012b). The relative chronology of Nubia. Archéo-Nil, 21, 81–100.Google Scholar
  67. Gatto, M. C., Curci, A., & Urcia, A. (2014). Nubian evidence in the Egyptian first nome: Results of the 2013-2014 field seasons of the Aswan-Kom Ombo Archaeological Project (AKAP). Journal of Ancient Egyptian Interconnections, 6(4), 38–41.Google Scholar
  68. Gautier, A. (2001). The early to late Neolithic archaeofaunas from Nabta and Bir Kiseiba. In F. Wendorf & R. Schild (Eds.), Holocene settlements of the Egyptian Sahara (The archaeology of Nabta Playa, Vol. 1, pp. 609–635). New York: Kluwer Academic/Plenum.Google Scholar
  69. Gebru, T., Eshetu, Z., Huang, Y., Woldemariam, T., Strong, N., Umer, M., DiBlasi, M., & Terwilliger, V. J. (2009). Holocene palaeovegetation of the Tigray Plateau in northern Ethiopia from charcoal and stable organic carbon isotopic analyses of gully sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 282, 67–80.Google Scholar
  70. Geraads, D. (1983). Faunal remains from the Gash delta, Sudan. Nyame Akuma, 23, 22.Google Scholar
  71. Gifford-Gonzalez, D. (Ed.) (2008). Adrar Bous: Archaeology of a central Saharan granitic ring complex in Niger. Tervuren: Royal Museum for Central Africa.Google Scholar
  72. Girod, A. (2005). New data on Quaternary freshwater and land molluscs in the Sahara. Triton, 12, 21–30.Google Scholar
  73. Gronenborn, D. (2009). Climate fluctuations and trajectories to complexity in the Neolithic: Towards a theory. Documenta Praehistorica, 36, 97–110.Google Scholar
  74. Haaland, R., & Haaland, G. (2013). Early farming societies along the Nile. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 541–554). Oxford: Oxford University Press.Google Scholar
  75. Hassan, F. A. (1986). Holocene lakes and settlements of the Western Faiyum. Journal of Archaeological Science, 13, 483–501.Google Scholar
  76. Hassan, F. A., Hamdan, M. A., Flower, R. J., & Keatings, K. (2012). Oxygen and carbon isotopic records in Holocene freshwater mollusc shells from the Faiyum palaeolakes, Egypt: Palaeoenvironmental and palaeoclimatic implications. Quaternary International, 266, 175–187.Google Scholar
  77. Haynes, C. V., Jr. (1982). Great Sand Sea and Selima Sand Sheet, eastern Sahara: Geochronology of desertification. Science, 217, 629–633.Google Scholar
  78. Haynes, C. V., Jr., Eyles, C. H., Pavlish, L. A., Ritchie, J. C., & Rybak, M. (1989). Holocene palaeoecology of the eastern Sahara; Selima Oasis. Quaternary Science Reviews, 8, 109–136.Google Scholar
  79. Hendrickx, S., Darnell, J. C., & Gatto, M. C. (2012). The earliest representation of royal power in Egypt: The rock drawings of Nag el-Hamdulab (Aswan). Antiquity, 86(334), 1068–1083.Google Scholar
  80. Hennekam, R., Jilbert, T., Schnetger, B., & de Lange, G. J. (2014). Solar forcing of Nile discharge and Sapropel S1 formation in the early to middle Holocene eastern Mediterranean. Paleoceanography, 29, 343–356.Google Scholar
  81. Herodotus. (1987). The history. Translated by D. Grene. Chicago: University of Chicago Press.Google Scholar
  82. Hoelzmann, P. (1993). Holozäne Limnite im NW-Sudan. PhD Dissertation, Freie Universität Berlin.Google Scholar
  83. Hoelzmann, P. (2002). Lacustrine sediments as indicators of climate change during the Late Quaternary in Western Nubia (Eastern Sahara). In Jennerstrasse 8 (Eds.), Tides of the desert – Contributions to the archaeology and environmental history of Africa in honour of Rudolph Kuper (pp. 375-398). Köln: Heinrich-Barth-Institut.Google Scholar
  84. Hoelzmann, P., Keding, B., Berke, H., Kröpelin, S., & Kruse, H.-J. (2001). Environmental change and archaeology: Lake evolution and human occupation in the Eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 193–217.Google Scholar
  85. Hoelzmann, P., Gasse, F., Dupont, L. M., Salzmann, U., Staubasser, M., Leuschner, D. C., & Sirocko, F. (2004). Palaeoenvironmental changes in the arid and subarid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In R. W. Battarbee, F. Gasse, & C. E. Stickley (Eds.), Past climate variability through Europe and Africa (pp. 219–256). New York: Springer.Google Scholar
  86. Hoelzmann, P., Schwalb, A., Roberts, N., Cooper, P., & Burgess, A. (2010). Hydrological response of an east-Saharan palaeolake (NW Sudan) to early-Holocene climate. The Holocene, 20, 537–549.Google Scholar
  87. Honegger, M. (2004). Settlements and cemeteries of the Mesolithic and early neolithic at El-Barga (Kerma region). Sudan & Nubia, 8, 27–32.Google Scholar
  88. Honegger, M. (2006). La culture du Pré-Kerma de Haute Nubie. Archéo-Nil, 16, 77–84.Google Scholar
  89. Honegger, M., Bonnet, C., Williams, M., Linseele, V., Crèvecœr, I., & Ruffieux, P. (2012). Archaeological excavations at Kerma (Sudan). Kerma, documents de la mission archéologique Suisse au Soudan (4). Neuchâtel: Université de Neuchâtel.Google Scholar
  90. Honegger, M., Gatto, M., Fallet, C., & Bundi, M. (2013). Archaeological excavations at Kerma (Sudan). Kerma, documents de la mission archéologique Suisse au Soudan (5). Neuchâtel: Université de Neuchâtel.Google Scholar
  91. Hunt, C. O., Reynolds, T. G., El-Rishi, H. A., Buzaian, A., Hill, E., & Barker, G. W. (2011). Resource pressure and environmental change on the North African littoral: Epipalaeolithic to Roman gastropods from Cyrenaica, Libya. Quaternary International, 244, 15–26.Google Scholar
  92. Huyge, D., Vandenberghe, D. A. G., De Dapper, M., Mees, F., Claes, W., & Darnell, J. C. (2011). First evidence of Pleistocene rock art in North Africa: Securing the age of the Qurta petroglyphs (Egypt) through OSL dating. Antiquity, 85, 1184–1193.Google Scholar
  93. Iacumin, P. (2008). Stable Isotopes as Dietary Indicators of Neolithic Nubian Population. In S. Salvatori & D. Usai (Eds.), Neolithic cemetery in the northern Dongola Reach: Sudan Archaeological Research Society, publication number 16. BAR International Series 1814. Oxford: Archaeopress.Google Scholar
  94. Ibrahim, H.-T. A. A. (2014). Megalithic architecture and the Nubian desert. In J. R. Anderson & D. A. Welsby (Eds.), The Fourth Cataract and beyond (pp. 303–309). Leuven: Peeters.Google Scholar
  95. Jackes, M., & Lubell, D. (2008). Environmental and cultural change in the early and mid-Holocene: Evidence from the télidjène basin, Algeria. African Archaeological Review, 25, 41–55.Google Scholar
  96. Johnson, B. J., Fogel, M. L., & Miller, G. H. (1993). Palaeoecological reconstructions in southern Egypt based on the stable carbon and nitrogen isotopes in the organic fraction and stable carbon isotopes in individual amino acids of fossil ostrich eggshell. Chemical Geology, 107, 493–497.Google Scholar
  97. Kimura, B., Marshall, F., Beja-Pereira, A., & Mulligan, C. (2013). Donkey domestication. African Achaeological Review, 30(1), 83–95.Google Scholar
  98. Kobashi, T., Severinghaus, J. F., Brook, E. J., Barnola, J.-M., & Grachev, A. M. (2007). Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews, 26, 1212–1222.Google Scholar
  99. Kobusiewicz, M., Kabacinski, J., Schild, R., Irish, J. D., Gatto, M. C., & Wendorf, F. (2010). Gebel Ramlah: Final Neolithic cemeteries from the Western Desert of Egypt. Poznan: Combined Prehistoric Expedition.Google Scholar
  100. Krom, M. D., Stanley, J.-D., Cliff, R. A., & Woodward, J. C. (2002). Nile river fluctuations over the past 7000 kyrs and their key role in sapropel development. Geology, 30, 71–74.Google Scholar
  101. Kröpelin, S. (1987). Evidence from early to Mid-Holocene playas in the Gilf Kebir (southwest Egypt). Paleoecology of Africa, 18, 189–208.Google Scholar
  102. Kröpelin, S. (2005). The geomorphological and palaeoclimatic framework of prehistoric occupation in the Wadi Bakht area. In J. Linstädter & U. Tegtmeier (Eds.), Wadi Bakht – Landschaftsarchäologie einer Siedlungskammer im Gilf Kebir. Africa Praehistorica, 18 (pp. 51–65). Heinrich Barth Institute: Cologne.Google Scholar
  103. Kröpelin, S., & Soulié-Märsche, I. (1991). Charophyte-remains from Wadi Howar as evidence for deep mid-Holocene freshwater lakes in the eastern Sahara of northwest Sudan. Quaternary Research, 36, 210–223.Google Scholar
  104. Kröpelin, S., Verschuren, D., Lezine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.-P., Fagot, M., Rumes, B., Russell, J. M., Conley, D. J., Schuster, M., von Suchodoletz, H., & Engstrom, D. R. (2008). Climate-driven ecosystem succession in the Sahara: The last 6000 years. Science, 320, 765–768.Google Scholar
  105. Kuper, R., & Kröpelin, S. (2006). Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science, 313, 803–807.Google Scholar
  106. Lamb, A. L., Leng, M. J., Lamb, H. F., Telford, R. J., & Mohammed, M. U. (2002). Climatic and nonclimatic effects on the d18O and d13C compositions of Lake Awassa, Ethiopia, during the last 6.5 ka. Quaternary Science Reviews, 21, 2199–2211.Google Scholar
  107. Lamb, H. F., Bates, C. R., Coombes, P. V., Marshall, M. H., Umer, M., Davies, S. J., & Dejen, E. (2007). Late Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quaternary Science Reviews, 26, 287–299.Google Scholar
  108. Lebatard, A.-E., Bourle, D. L., Duringer, P., Jolivet, M., Braucher, R., Carcaillet, J., Schuster, M., Arnaud, N., Monie, P., Lihoreau, F., Likius, A., Mackaye, H. T., Vignaud, P., & Brunet, M. (2008). Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proceedings of National Academy of Sciences, 105, 3226–3231.Google Scholar
  109. Lezine, A.-M. (2009). Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. C.R. Geoscience, 341, 750–759.Google Scholar
  110. Linseele, V., Marinova, E., Van Neer, W., & Vermeersch, P. M. (2010). Sites with Holocene dung deposits in the Eastern Desert of Egypt: Visited by herders? Journal of Arid Environments, 74, 818–828.Google Scholar
  111. Linseele, V., Van Neer, W., Thys, S., Phillipps, R., Cappers, R., Wendrich, W., & Holdaway, S. (2014). New archaeozoological data from the Fayum “Neolithic” with a critical assessment of the evidence for early stock keeping in Egypt. PLoSONE, 9(10), e108517.Google Scholar
  112. Liverani, M. (Ed.). (2005). Aghram Nadharif. The Barkat Oasis. (Sha’abiya of Ghat, Libyan Sahara) in Garamantian times. AZA Monographs 5. Firenze: All’Insegna del Giglio.Google Scholar
  113. Macklin, M. G., Woodward, J. C., Welsby, D. A., Duller, G. A. T., Williams, F. M., & Williams, M. A. J. (2013). Reach-scale river dynamics moderate the impact of rapid Holocene climate change on floodwater farming in the desert Nile. Geology, 41, 695–698.Google Scholar
  114. Madella, M., García-Granero, J. J., Out, W. A., Ryan, P., & Usai, D. (2014). Microbotanical evidence of domestic cereals in Africa 7000 years ago. PLoSONE, 9(10), e110177.Google Scholar
  115. Marriner, N., Flaux, C., Kaniewski, D., Morhange, C., Leduc, G., Moron, V., Chen, Z., Gasse, F., Emereur, J.-Y., & Stanley, J.-D. (2012). ITCZ and ENSO-like modulation of Nile delta hydro-geomorphology during the Holocene. Quaternary Science Reviews, 45, 73–84.Google Scholar
  116. Marshall, F., & Hildebrand, E. (2002). Cattle before crops: The beginning of food production in Africa. Journal of World Prehistory, 16(2), 99–143.Google Scholar
  117. Marshall, M. H., Lamb, H. F., Huws, D., Davies, S. J., Bates, R., Bloemendal, J., Boyle, J., Leng, M. J., Umer, M., & Bryant, C. (2011). Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Global and Planetary Change, 78, 147–161.Google Scholar
  118. Mattingly, D. J., Daniels, C., Dore, J. N., Edwards, D. & Hawthorne, J. (Eds.). (2003). The archaeology of Fazzān. Volume 1: Synthesis. Tripoli: Department of Antiquity/London: Society for Libyan Studies.Google Scholar
  119. Mawson, R., & Williams, M. A. J. (1984). A wetter climate in eastern Sudan 2,000 years ago? Nature, 308, 49–51.Google Scholar
  120. Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlen, W. K., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., Van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., & Steig, E. J. (2004). Holocene climate variability. Quaternary Research, 62, 243–255.Google Scholar
  121. Mercuri, A. M. (2008). Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). Journal of Archaeological Science, 35, 1619–1642.Google Scholar
  122. Merhinger, P. J. Jr., Petersen, K. L., Hassan, F. A. (1979). A pollen record from Birket Qarun and the recent history of the Fayum, Egypt. Quaternary Research, 11, 238–256.Google Scholar
  123. Moeyersons, J., Vermeersch, P. M., Beeckman, H., & Van Peer, P. (1999). Holocene environmental changes in the Gebel Umm Hammad, Eastern Desert, Egypt. Geomorphology, 26, 297–312.Google Scholar
  124. Mori, L. (Ed.). (2013). Life and death of a rural village in Garamantian times: The archaeological investigation in the Oasis of Fewet (Libyan Sahara), AZA 6. Firenze: Edizioni All’Insegna del Giglio.Google Scholar
  125. Negash, A. (2001). The Holocene prehistoric archaeology of the Temben region, northern Ethiopia. PhD Dissertation, University of Florida.Google Scholar
  126. Neumann, K. (1989). Holocene vegetation of eastern Sahara: Charcoal from prehistoric sites. African Archaeological Review, 7, 97–116.Google Scholar
  127. Neumann, K., & Uebel, D. (2001). The cold Early Holocene in the Acacus: Evidence from charred wood. In E. A. A. Garcea (Ed.), Uan Tabu in the settlement history of the Libyan Sahara (pp. 211–213). Firenze: Edizioni All’Insegna del Giglio.Google Scholar
  128. Nicholson, S. E. (2000). The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change, 26, 137–158.Google Scholar
  129. Nicholson, S. E. (2011). Dryland climatology. Cambridge: Cambridge University Press.Google Scholar
  130. Nicoll, K. (2004). Recent environmental change and prehistoric human activity in Egypt and northern Sudan. Quaternary Science Reviews, 23, 561–580.Google Scholar
  131. North Greenland Ice Core Project members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–151.Google Scholar
  132. Osborne, A. H., Vance, D., Rohling, E. J., Barton, N., Rogerson, M., & Fello, N. (2008). A humid corridor across the Sahara for the migration of early modern humans out of Africa 120,000 years ago. Proceedings of the National Academy of Sciences, 105, 16444–16447.Google Scholar
  133. Pachur, H.-J. (1980). Climatic history in the Late Quaternary in southern Libya and western Libyan Desert. In M. J. Salem and M. T. Busrewil (Eds.), The geology of Libya Vol. III (pp. 781–788). London: Academic Press.Google Scholar
  134. Pachur, H.-J., & Hoelzmann, P. (1991). Palaeoclimatic implications of Late Quaternary Lacustrine sediments in western Nubia. Quaternary Research, 36, 257–276.Google Scholar
  135. Pachur, H.-J., & Hoelzmann, P. (2000). Late Quaternary palaeoecology and palaeoclimates of the eastern Sahara. Journal of African Earth Sciences, 30, 929–939.Google Scholar
  136. Pachur, H. J., & Kröpelin, S. (1987). Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science, 237, 298–300.Google Scholar
  137. Pachur, H. J., Kröpelin, S., Hoelzmann, P., Goschin, M., & Altmann, N. (1990). Late Quaternary fluvio-lacustrine environments of western Nubia. Berliner Geographische Abhandlungen, 120, 203–260.Google Scholar
  138. Perego, A., Cremaschi, M., & Zerboni, A. (2007). Il telerilevamento nella ricostruzione della paleoidrografia olocenica in zone aride. Il caso di studio di Wadi Tanezzuft, Libia SO. Rendiconti. Società Geologica Italiana, 4, 97–99.Google Scholar
  139. Petit-Maire, N. (1982). Le Shati, lac Pléistocène du Fezzan (Libye). Marsille: CNRS.Google Scholar
  140. Phillipps, R., Holdaway, S., Wendrich, W., & Cappers, R. (2012). Mid-Holocene occupation of Egypt and global climatic change. Quaternary International, 251, 64–76.Google Scholar
  141. Phillipson, D. W. (2013). Complex societies of the Eritrean/Ethiopian highlands and their neighbours. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 799–816). Oxford: Oxford University Press.Google Scholar
  142. Reinold, J. (2001). Kadruka and the Neolithic in the Northern Dongola Reach. Sudan & Nubia, 5, 2–10.Google Scholar
  143. Ritchie, J. C., Eyles, C. H., & Haynes, C. V., Jr. (1985). Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature, 314, 352–355.Google Scholar
  144. Roberts, N. (1998). The Holocene: An environmental history. Oxford: Blackwell-Wiley.Google Scholar
  145. Roberts, N., Eastwood, W. J., Kuzucuoğlu, C., Fiorentino, G., & Caracuta, V. (2011). Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene, 21(1), 147–162.Google Scholar
  146. Rognon, P. (1980). Pluvial and arid phases in the Sahara: The role of non-climatic factors. Palaeoecology of Africa, 27, 45–62.Google Scholar
  147. Rognon, P., & Williams, M. A. J. (1977). Late Quaternary climatic changes in Australia and North Africa: A preliminary interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 21, 285–327.Google Scholar
  148. Rohling, E. J., & Pälike, H. (2005). Centennial-scale climate cooling with a sudden event around 8,200 years ago. Nature, 434, 975–979.Google Scholar
  149. Rohling, E. J., Casford, J., Abu-Zied, R., Cooke, S., Mercone, D., Thomson, J., Croudace, I., Jorissen, F. J., Brinkhuis, H., Kallmeyer, J., & Wefer, G. (2002). Rapid Holocene climate change in the Eastern Mediterranean. In F. A. Hassan (Ed.), Droughts, food and culture (pp. 35–46). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  150. Roset, J.-P. (1983). Nouvelles données sur le problème de la néolithisation du Sahara méridional: L’Air et le Ténéré, au Niger Cahiers de I’QRSTQM, Série Géologie, 13(2), 119–142.Google Scholar
  151. Roset, J.-P. (1987). Paleoclimatic and cultural conditions of Neolithic development in the early Holocène of Northern Niger (Air and Ténéré). In A. E. Close (Ed.), Prehistory of arid North Africa, Essays in honor of Fred Wendorf (pp. 211–234). Dallas: Southern Methodist University Press.Google Scholar
  152. Rossignol-Strick, M., Nesteroff, V., Olive, P., & Vergnaud-Grazzini, C. (1982). After the deluge; Mediterranean stagnation and sapropel formation. Nature, 295, 105–110.Google Scholar
  153. Salvatori, S. & Usai, D. (Eds.) (2008). A Neolithic cemetery in the Northern Dongola reach. Excavations at site R12. SARS 16. Oxford: BAR Int. Ser. 1814Google Scholar
  154. Salvatori, S., & Usai, D. (2009). El Salha Project 2005: New Khartoum Mesolithic sites from central Sudan. KUSH, 19, 87–96.Google Scholar
  155. Salvatori, S., Usai, D., & Zerboni, A. (2011). Mesolithic site formation and palaeoenvironment along the White Nile (central Sudan). African Archaeological Review, 28, 177–211.Google Scholar
  156. Schild, R., & Wendorf, F. (2004). The megaliths of Nabta Playa. Academia, 1(1), 10–15.Google Scholar
  157. Schüler, L., Hemp, A., Zech, W., & Behling, H. (2012). Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacialeinterglacial cycle. Quaternary Science Reviews, 39, 1–13.Google Scholar
  158. Sereno, P. C., Garcea, E., Jousse, H., Stojanowski, C. M., Saliège, J.-F., Maga, A., Ide, O. A., Knudson, K. J., Mercuri, A. M., Stafford, T. W., Kaye, T. G., Giraudi, C., Massamba N'siala, I., Cocca, E., Moots, H. M., Dutheil, D. B., & Stivers, J. P. (2008). Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. PLoS ONE, 3(8), e2995.Google Scholar
  159. Servant, M. (1983). Séquences continentals et variations climatiques: Evolution du basin du Tchad au Cenozoique superieur. Paris: ORSTOM.Google Scholar
  160. Servant, M., & Servant-Vildary, S. (1980). L’environnement Quaternaire du bassin du Tchad. In M. A. J. Williams & H. Faure (Eds.), The Sahara and the Nile (pp. 133–163). Rotterdam: Balkema.Google Scholar
  161. Shanahan, T. M., Overpeck, J. T., Wheeler, C. W., Beck, J. W., Pigati, J. S., Talbot, M. R., Scholz, C. A., Peck, J., & King, J. W. (2006). Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 287–302.Google Scholar
  162. Shaw, I. (2000). The Oxford history of ancient Egypt. Oxford: Oxford University Press.Google Scholar
  163. Shirai, N. (2010). The archaeology of the first farmer-herders in Egypt. Archaeological Studies Leiden University 21. Leiden: Leiden University Press.Google Scholar
  164. Smith, A. B. (1984). Origins of the Neolithic in the Sahara. In J. D. Clark & S. A. Brandt (Eds.), From hunters to farmers: The causes and consequences of food production in Africa (pp. 84–92). Berkeley: University of California Press.Google Scholar
  165. Smith, J. R., Giegengack, R., Schwarcz, P. H., McDonald, M. M. A., Maxine, R., Kleindienst, M. R., Hawkins, A. L., & Churcher, C. S. (2004). A reconstruction of quaternary pluvial environments and human occupations using stratigraphy and geochronology of fossil-spring tufas, Kharga Oasis, Egypt. Geoarchaeology, 19, 407–439.Google Scholar
  166. Stanley, J.-D., Krom, M. D., Cliff, R. A., & Woodward, G. C. (2003). Short contribution: Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence. Geoarchaeology, 18(3), 395–402.Google Scholar
  167. Storemyr, P., Kelany, A., Negm, M. A., & Tohami, A. (2008). More “Lascaux along the Nile”? Possible Late Palaeolithic rock art in Wadi Abu Subeira, Upper Egypt. Sahara, 19, 155–158.Google Scholar
  168. Street, F. A. (1978). Late Quaternary precipitation estimates for the Zwai-Shala Basin, southern Ethiopia. Palaeoecology of Africa., 11, 135–143.Google Scholar
  169. Swezey, C. (2001). Eolian sediment responses to late Quaternary climate changes: temporal and spatial patterns in the Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 119–155.Google Scholar
  170. Tafuri, M. A., Bentley, R. A., Manzi, G., & di Lernia, S. (2006). Mobility and kinship in the prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus Mts. (southwestern Libya). Journal of Anthropological Archaeology, 25, 390–402.Google Scholar
  171. Terwilliger, V. J., Eshetu, Z., Colman, A., Bekele, T., Gezahgne, A., & Fogel, M. L. (2008). Reconstructing palaeoenvironment from δ13C and δ15N values of soil organic matter: a calibration from arid and wetter elevation transects in Ethiopia. Geoderma, 147, 197–210.Google Scholar
  172. Terwilliger, V. J., Eshetu, Z., Huang, Y., Alexandre, M., Umer, M., & Gebru, T. (2011). Local variation in climate and land use during the time of the major kingdoms of the Tigray Plateau in Ethiopia and Eritrea. CATENA, 85, 130–143.Google Scholar
  173. Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrowsmith, C., White, J. W. C., Vaughn, B., & Popp, T. (2007). The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews, 26, 70–81.Google Scholar
  174. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., & Beer, J. (2002). Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science, 298, 589–593.Google Scholar
  175. Thorweihe, U. (1990). Nubian aquifer system. In R. Said (Ed.), The geology of Egypt (2nd ed.). Amsterdam: Elsevier.Google Scholar
  176. Tristant, Y. (2012). How to fill a gap? New perspectives about exchanges between Egypt and the Near-East during the early Neolithic Period. In P. Tallet & E. S. Mahfouz (Eds.), The Red Sea in Pharaonic times, actes du colloque tenu au Caire et à Ayn Soukhna, janvier 2009 (pp. 145-158).Google Scholar
  177. Usai, D., Salvatori, S., Iacumin, P., Di Matteo, A., Jakob, T., & Zerboni, A. (2010). Excavating a unique pre-Mesolithic cemetery in Central Sudan. Antiquity, 84(323), http://antiquity.ac.uk/projgall/usai323/.
  178. Vermeersch, P. M. (2002). The Egyptian Nile Valley during the Early Holocene. In Jennerstrasse 8 (Eds.), Tides of the desert. Cologne: Heinrich-Bart Institute.Google Scholar
  179. Vermeersch, P. M., Paulissen, E., Huyge, D., Neumann, K., Van Neer, W., & Van Peer, P. (1992). Predynastic hearths in Upper Egypt. In R. Friedman & B. Adams (Eds.), The followers of Horus. Studies dedicated to Michael Allen Hoffman (pp. 163–172). Oxford: Oxbow.Google Scholar
  180. Vernet, R., & Faure, H. (2001). Isotopic chronology of the Sahara and the Sahel during the late Pleistocene and the early and Mid-Holocene (15,000–6000 BP). Quaternary International, 68–71, 385–387.Google Scholar
  181. Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Krsiten, I., Blaauw, M., Fagot, M., Haug, G. H., & CHALLACEA project members. (2009). Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature, 462, 637–641.Google Scholar
  182. Von den Driesch, A., & Boessneck, J. (1985). Die Knochenfunde aus der neolitischen Siedlung von Merimde-Benisalame an westlichen Nil Delta. Institut fur Palaoanotomie, Domestikationsforschung und Geschichte der Tiermedizin, Munchen and Deutsches Archaologisches Institut, Abteilung Kairo.Google Scholar
  183. Warfe, A. R. (2003). Cultural origins of the Egyptian Neolithic and Predynastic: An evaluation of the evidence from the Dakhleh oasis (south central Egypt). African Archaeological Review, 20, 175–202.Google Scholar
  184. Welc, F., & Marks, L. (2013). Climate change at the end of the Old Kingdom in Egypt around 4200 BP: New geoarchaeological evidence. Quaternary International, 324, 124–133.Google Scholar
  185. Welsby, D. A. (2001). Life on the desert edge. BAR Int. Ser. Oxford: Archaeopress.Google Scholar
  186. Wendorf, F. (1968). The Prehistory of Nubia. Dallas: Forth Bergwin Research Center and Southern Methodist University Press.Google Scholar
  187. Wendorf, F., & Schild, R. (Eds.). (2001). Holocene settlements of the Egyptian Sahara, vol. 1, The archaeology of Nabta Playa. New York: Kluwer Academic/Plenum.Google Scholar
  188. Wendorf, F., & Schild, R. (1976). Prehistory of the Nile Valley. New York: Academic Press.Google Scholar
  189. Wendorf, F., Schild, R., & Close, A. (Eds.). (1989). Prehistory of Wadi Kubbaniya. Vols. 2 and 3. Dallas: Southern Methodist University.Google Scholar
  190. Wendrich, W., Taylor, R. E., & Southon, J. (2010). Dating stratified settlement sites at Kom K and Kom W: Fifth millennium BCE radiocarbon ages for the Fayum Neolithic. Nuclear Instruments and Methods in Physics Research B, 268, 999–1002.Google Scholar
  191. Wengrow, D. (2006). The archaeology of early Egypt. Social transformations in North-East Africa, 10,000 to 2650 BC. Cambridge: Cambridge University Press.Google Scholar
  192. Williams, M. A. J. (2009). Late Pleistocene and Holocene environments in the Nile basin. Global and Planetary Change, 69, 1–15.Google Scholar
  193. Williams, M. A. J. (2014). Climate change in deserts. Past, present and future. Cambridge: Cambridge University Press.Google Scholar
  194. Williams, M. A. J., & Adamson, D. A. (1980). Late Quaternary depositional history of the Blue and White Nile rivers in central Sudan. In M. A. J. Williams & H. Faure (Eds.), The Sahara and the Nile (pp. 281–362). Rotterdam: A.A. Balkema.Google Scholar
  195. Williams, M. A. J., & Jacobsen, G. E. (2011). A wetter climate in the desert of northern Sudan 9900-7600 years ago. Sahara, 22, 7–14.Google Scholar
  196. Williams, M., Talbot, M., Aharon, P., Abdl Salaam, Y., Williams, F., & Brendeland, K. I. (2006). Abrupt return of the summer monsoon 15,000 years ago: New supporting evidence from the lower White Nile valley and Lake Albert. Quaternary Science Reviews, 25, 2651–2665.Google Scholar
  197. Williams, M. A. J., Williams, F. M., Duller, G. A. T., Munro, R. N., El Tome, O. A. M., Barrows, T. T., Macklin, M., Woodward, J., Talbot, M. R., Haberlah, D., & Fluin, J. (2010). Late Quaternary floods and droughts in the Nile valley, Sudan: New evidence from optically stimulated luminescence and AMS radiocarbon dating. Quaternary Science Reviews, 29, 1116–1137.Google Scholar
  198. Williams, M. A. J., Usai, D., Salvatori, S., Williams, F. M., Zerboni, A., Maritan, L., & Linseele, V. (2015). Late Quaternary environments and prehistoric occupation in the lower White Nile valley, central Sudan. Quaternary Science Review. doi: 10.1016/j.quascirev.2015.03.007.Google Scholar
  199. Wolff, C., Haug, G. H., Timmermann, A., Sinninghe Damsté, J. S., Brauer, A., Sigman, D. M., Cane, M. A., & Verschuren, D. (2011). Reduced interannual rainfall variability in East Africa during the last ice age. Science, 333, 743–747.Google Scholar
  200. Yan, Z., & Petit-Maire, N. (1994). The last 140 ka in the Afro-Asian arid/semi-arid transitional zone. Palaeogeography, Palaeoclimatology, Palaeoeocology, 110, 217–233.Google Scholar
  201. Zdziebłowski, S. (2014). PAP – Science and scholarship in Poland. Unique Neolithic child cemetery found in Egypt, Past Horizons, January 5, 2014. http://www.pasthorizonspr.com/index.php/archives/01/2014/unique-neolithic-child-cemetery-found-in-Egypt, accessed January 10, 2014.
  202. Zerboni, A. (2006). Cambiamenti climatici olocenici nel Sahara centrale: Nuovi archivi paleoambientali. PhD dissertation, Università degli Studi di Milano.Google Scholar
  203. Zerboni, A. (2011). Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in central Sudan. Geoarchaeology: An International Journal, 26, 365–391.Google Scholar
  204. Zerboni, A. (2013). Early Holocene palaeoclimates in northern Africa: An overview. In N. Shirai (Ed.), Neolithisation of northeastern Africa. Studies in Early Near Eastern production, subsistence, and environment, 16 (pp. 65-82). Berlin: ex Oriente.Google Scholar
  205. Zerboni, A., & Cremaschi, M. (2012). Il significato paleoclimatico dei carbonati continentali olocenici centro-sahariani: Memoria delle forzanti orbitali e di eventi climatici rapidi. Rendiconti Online Società Geologica Italiana, 18, 36–39.Google Scholar
  206. Zerboni, A., Perego, A., & Cremaschi, M. (2015). Geomorphological map of the Tadrart Acacus Massif and the Erg Uan Kasa (Libyan Central Sahara). Journal of Maps. doi: 10.1080/17445647.2014.955891.Google Scholar
  207. Zuppi, G. M., & Sacchi, E. (2004). Hydrogeology as a climate recorder: Sahara-Sahel (North Africa) and the Po Plain (Northern Italy). Global and Planetary Science, 40, 79–91.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Archaeology and Ancient HistoryUniversity of LeicesterLeicesterUK
  2. 2.Dipartimento di Scienze della Terra “A. Desio”Università degli Studi di MilanoMilanItaly

Personalised recommendations