Advertisement

African Archaeological Review

, Volume 32, Issue 2, pp 249–266 | Cite as

Coring Lake Fati and Settlement Archaeology of the Middle Niger Lakes Region

  • Peter R. Coutros
  • Peter M. J. Douglas
Original Article

Abstract

A two-part archaeological and limnological study of the Malian Lakes Region has revealed the high research potential of the region. The exploratory reconnaissance of the Gorbi Valley, on the eastern edge of Lake Fati, identified, mapped and sampled eight new sites. The results of the survey suggest a long duration occupation of the Gorbi Valley, as well as possible connections with the populations of the Inland Niger Delta and southeastern Mauritania. The Lake Fati core represents the first lake sediment core from the western Sahel. This 5.4 m sediment core contains a continuous record of lake mud from 10.43 to 4.66 kyr BP. Analysis of the core reveals that Al and Si abundances are decoupled following a deposition of 16 cm of sand at 4.5 ka BP, with Al decreasing and Si increasing rapidly. This period of sand deposition is significantly younger than that of the transition at 5.5 ka BP recorded in marine cores from ODP site 658, taken off the Mauritanian coast, potentially extending the timeframe in which dune systems were stable and lake systems were at their highstand. While highlighting the need for more localized climate chronologies and archaeological investigations, this study may shed light on circumstances surrounding the initial colonization and further development of the Lakes Region.

Keywords

Mali Middle Niger Palaeoclimate West Africa Sahel Sediment core 

Résumé

Une étude de la Zone Lacustre du Mali a montré la potentialité de la région en matière de recherche plus archéologique que limnologique. Une reconnaissance d’exploration effectuée dans la vallée de Gorbi, sur la côte orientale du lac de Fati, a mis au jour huit nouveaux sites. Ces sites ont été cartographiés, et des échantillons archéologiques y ont été systématiquement prélevés. Les résultats de la reconnaissance indiquent une occupation de longue durée de la vallée de Gorbi, ainsi que des connexions possibles avec les populations de l’intérieur du delta du Niger et de la région du sud-est de la Mauritanie. Les échantillons résultant du carottage des sédiments du lac Fati représente la première carotte de sédiments lacustres prélevés du Sahel occidental. La carotte est de 5,4 mètres et continuellement enregistre la déposition des sédiments du lac étendant de 10430 à 4660 BP. L’analyse de cette carotte révèle un dépôt de couche contenant de l’Al et du Si en abondance, succédée par un autre dépôt de couche de 16 cm de sable à 4,500 BP, avec Al diminuant et Si augmentant de plus en plus rapidement. La date de ce dépôt de sable est beaucoup plus récente que la celle de la transition à 5,500 BP enregistrée dans les carottes marines du site ODP 658, antérieurement prélevé de la côte mauritanienne. Ce qui étend probablement la phase pendant laquelle les systèmes dunaires étaient stables et les systèmes lacustres atteignaient la plus haute de leur niveau. Bien que plus de chronologies climatiques localisées et des recherches archéologiques soient encore nécessaires, cette étude contribue déjà à l’éclaircissement du peuplement initial de la Zone Lacustre du Mali, et l’évolution subséquente de l’occupation de l’espace dans la région.

Notes

Acknowledgments

This research was funded by the Yale Climate and Energy Institute (YCEI). We would like to thank the other members of the research team: Douglas Park, Courtney Warren and Dr. Ali Ould Sidi, Roderick McIntosh for his unwavering support and our friends and colleagues at the Direction Nationale du Patrimoine Culturel and the Ministère de la Culture du Mali, our colleagues Jessamy Doman and Tanambelo Rasolondrainy for their keen eyes and honest revising, as well as the two anonymous reviewers for their helpful comments. Research Permit number 03697166-88/09/MESRS/CNRST was provided by the Centre National de la Reserche Scientifique et Technologique, Mali. Also, many thanks go to the many villages in the Goundam region for welcoming us to do the field research for this study.

References

  1. Alley, R. B., Messe, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., & Zielinski, G. A. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–527.CrossRefGoogle Scholar
  2. Bellouche, A., & Neumann, K. (1995). A new contribution to the Holocene vegetation history of the West African Sahel: Pollen from Oursi, Burkina Faso and charcoal from three sites in northeast Nigeria. Vegetation History and Archaeobotany, 4, 31–39.Google Scholar
  3. Blaauw, M. (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512–518.CrossRefGoogle Scholar
  4. Bouimetarhan, I., Dupont, L., Schefuß, E., Mollenhauer, G., Mulitza, S., & Zonneveld, K. (2009). Palynological evidence for climatic and oceanic variability off NW Africa during the late Holocene. Quaternary Research, 72, 188–197.CrossRefGoogle Scholar
  5. Bradley, R. (2000). Paleoclimate: 1000 years of climate change. Science, 288, 1253–1355.CrossRefGoogle Scholar
  6. Brooks, Nick, (1999) Dust-climate interactions in the Sahel-Sahara zone of northern Africa, with particular reference to late twentieth century Sahelian drought. Ph.D dissertation, University of East Anglia.Google Scholar
  7. Casteñeda, I. S., Mulitza, S., Schefuß, E., Lopes dos Santos, R. A., Damsté, J. S., & Sinninghe, S. S. (2009). Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20159–20163.CrossRefGoogle Scholar
  8. Charney, J., Stone, P. H., & Quirk, W. J. (1975). Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187, 434–435.CrossRefGoogle Scholar
  9. de Vries, E., Makaske, B., Tainter, J.A., & McIntosh, R.J. (2005). Geomorphology and human palaeoecology of the Méma, Mali. Alterrareport 1244, Wageningen.Google Scholar
  10. Deevey, E. S., Jr., Gross, M. S., Hutchinson, G. E., & Kraybill, H. L. (1954). The natural C14 contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences of the United States of America, 40, 285–288.CrossRefGoogle Scholar
  11. Dembélé, M., (1986). Entre Débo et Faguibine: Étude sur la morphologie et la typologie des sites archéologiques d’une région lacustre au Mali. Thèse de doctorat de trisième cycle, École des Hautes Études en Sciences Sociales, Paris.Google Scholar
  12. deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347–361.CrossRefGoogle Scholar
  13. Drézen, L., Yann, L., Laurent, R., Michel, G., Aline, C., Huysecom, E., & Ballouche, A. (2010). Hydrosedimentary records and Holocene environmental dynamics in the Yamé Valley (Mali, Sudano-Sahelian West Africa). Comptes Rendus Geoscience, 342, 244–253.CrossRefGoogle Scholar
  14. Francus, P., Von Suchodolets, H., Dietzes, M., Donner, R. V., Bouchard, F., Roy, A.-J., Fagot, M., Verschuren, D., & Kröpelin, S. (2013). Varved sediments of Lake Yoa (Ounianga Kebir, Chad) reveal progressive drying of the Sahara during the last 6100 years. Sedimentology, 60, 911–934.CrossRefGoogle Scholar
  15. Graetz, R. D. (1991) Desertification: A tale of two feedbacks. In. H. A. Mooney (Ed.) Ecosystem experiments. (pp. 59–87), Wiley-Blackwell.Google Scholar
  16. Grove, A. T. (1978). Geographical introduction to the Sahel. Geographical Journal, 144, 07–415.CrossRefGoogle Scholar
  17. Grove, A. T., & Warren, A. (1968). Quaternery landforms and climate on the south side of the Sahara. The Geographical Journal, 134(2), 194–208.CrossRefGoogle Scholar
  18. Hassan, F. A. (2002). Introduction. In F. A. Hassan (Ed.), Droughts, food and culture: Ecological change and food security in Africa’s later prehistory (pp. 1–7). Dordrecht: Kluwer.CrossRefGoogle Scholar
  19. Hodell, D. A., Curtis, J. H., & Brenner, M. (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature, 375, 391–394.CrossRefGoogle Scholar
  20. Hodell, D. A., Brenner, M., & Curtis, J. H. (2005). Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quaternary Science Reviews, 24, 1413–1427.CrossRefGoogle Scholar
  21. Holmes, J. A., Fothergill, P. A., Street-Perrott, F. A., & Perrott, R. A. (1998). A high-resolution Holocene ostracod record from the Sahel zone of Northeastern Nigeria. Journal of Paleolimnology, 20, 369–380.CrossRefGoogle Scholar
  22. Johnson, T. C., Brown, E. T., McManus, J., Barry, S., Barker, P., & Gasse, F. (2002). A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science, 296, 113–132.CrossRefGoogle Scholar
  23. Koechlin, J. (1997). Ecological conditions and degredation factors in the Sahel. In C. Raynaut (Ed.), Societies and nature in the Sahel (pp. 12–36). London: Routledge.CrossRefGoogle Scholar
  24. Krinner, G., Lézine, A. M., Braconnot, P., Sepulchre, P., Ramstein, G., Grenier, C., & Gouttevin, I. (2012). A reassessment of lake and wetland feedbacks on the North African Holocene climate. Geophysical Research Letters, 39, L07701.CrossRefGoogle Scholar
  25. Kropelin, S., Verschuren, D., Lezine, A. M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J. P., Fagot, M., Rumes, B., Russell, J. M., Darius, F., Conley, D. J., Schuster, M., von Suchodoletz, H., & Engstrom, D. R. (2008). Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science, 320, 765–768.CrossRefGoogle Scholar
  26. Kuhlmann, H., Meggers, H., Freudenthal, T., & Wefer, G. (2004). The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophysical Research Letters, 31, L22204.CrossRefGoogle Scholar
  27. Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., & Rennie, J. (2011). An overview of the global historical climatology network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres (1984–2012), 116, D19.CrossRefGoogle Scholar
  28. Lespez, L., Le Drézen, Y., Garnier, A., Rasse, M., Eichhorn, B. O., Ballouche, A., Neumann, K., & Huysecom, E. (2011). High resolution fluvian records of Holocene environmental changes in the Sahel: the Yame river at Ounjougou (Mali, West Africa). Quaternary Science Reviews, 30, 737–756.CrossRefGoogle Scholar
  29. Lézine, A. M. (1988). New pollen data from the Sahel, Senegal. Review of Palaeobotany and Palynology, 55, 141–154.CrossRefGoogle Scholar
  30. Lézine, A. M., & Hooghiemstra, H. (1990). Land-sea comparisons during the last glacial-interglacial transition: Pollen records from West Tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 79, 313–331.CrossRefGoogle Scholar
  31. Lézine, A. M., Hély, C., Grenier, C., Braconnot, P., & Krinner, G. (2011). Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data. Quaternary Science Reviews, 30, 3001–3012.CrossRefGoogle Scholar
  32. Manning, K., & Timpson, A. (2014). The demographic response to Holocene climate change in the Sahara. Quaternary Science Reviews, 101, 28–35.CrossRefGoogle Scholar
  33. Marshall, F., & Hildebrand, E. (2002). Cattle before crops: The beginnings of food production in Africa. Journal of World Prehistory, 16, 99–143.Google Scholar
  34. Mauz, B., & Felix-Henningsen, P. (2005). Palaeosols in Saharan and Sahelian dunes of Chad: Archives of Holocene North African climate change. The Holocene, 15(3), 453–458.CrossRefGoogle Scholar
  35. McIntosh, R. J. (2005). Ancient Middle Niger: Urbanism and the self-organizing landscape. New York: Cambridge University Press.Google Scholar
  36. McIntosh, R. J., & McIntosh, S. K. (1985). Archaeological reconnaissance in Timbuktu, Mali. Final Report to National Geographic Society.Google Scholar
  37. McIntosh, R. J., & McIntosh, S. K. (1988). From siècles obscurs to revolutionary centuries on the Middle Niger. World Archaeology, 20, 141–165.CrossRefGoogle Scholar
  38. McIntosh, R. J., Tainter, J. A., & McIntosh, S. K. (Eds.). (2000). The way the wind blows: Climate history and human action. New York: Columbia University Press.Google Scholar
  39. Neumann, K. (1989). Holocene vegetation of the eastern Sahara: Charcoal from prehistoric sites. African Archaeological Review, 7, 97–116.CrossRefGoogle Scholar
  40. Nicholson, S. E. (1979). The methodology of historical climate reconstruction and its applications to Africa. Journal of African History, 20(1), 31–49.CrossRefGoogle Scholar
  41. Nicholson, S. E. (1994). Recent rainfall fluctuations in Africa and their relationships to past conditions over the continent. The Holocene, 4, 121–131.CrossRefGoogle Scholar
  42. Nicholson, S. E., Tucker, C. J., & Ba, M. B. (1998). Desertification, drought and surface vegetation: An example from the West African Sahel. Bulletin of the American Meteorological Society, 79, 815–829.CrossRefGoogle Scholar
  43. Park, T. K. (1992). Early trends towards class stratification: Chaos, common property, and flood recessional agriculture. American Anthropologist, 94(1), 90–117.CrossRefGoogle Scholar
  44. Petit-Maire, N. (1986). Homo climaticus: Vers une paléoanthropologie écologique. Bulletin de la Société Royal Belge d’Anthropologie et de Préhistoire, 97, 59–75.Google Scholar
  45. Petit-Maire, N. (1987). Local responses to recent global climatic change: Hyperarid central Sahara and coastal Sahara. In G. Matheis & H. Schandelmeier (Eds.), Current research in African earth sciences (pp. 45–69), Balkema, RotterdamGoogle Scholar
  46. Petit-Maire, N. (1988). Taoudenni Basin (Mali), Holocene palaeolimnology and environments. In H. Hagedorn, R. Baumhauer (Eds.), Geowissenschaftliche Untersuchungen in Afrika (pp 45–52). Würzburger geographische Arbeiten, 69.Google Scholar
  47. Petit-Maire, N., Celles, J. C., Commelin, D., Delibrias, G., & Raimbault, M. (1983). The Sahara in northern Mali: Man and his environment between 10,000 and 3500 bp. (Preliminary results). African Archaeological Review, 1, 105–125.CrossRefGoogle Scholar
  48. Raimbault, M. (1991). In M. Raimbault & K. Sanogo (Eds.), La fouille sur la butte de Mouyssam II (KNT 2): Campagnes de 1985 et 1986. Karthala, Paris: Recherches Archéologiques au Mali: Les Sites Protohistoriques de la Zone Lacustre.Google Scholar
  49. Raimbault, M., & Sanogo, K. (1991). Recherches archéologiques au Mali. Les sites protohistoriques de la zone lacustre. Paris: A.C.C.T. et Karthala.Google Scholar
  50. Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., & Weyhenmeye, C. E. (2009). Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years Cal Bp. Radiocarbon, 51, 1111–1150.Google Scholar
  51. Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jerrell, W. M., Virginia, R. A., & Whitford, W. G. (1990). Biophysical feedbacks in global desertification. Science, 247, 1043–1048.CrossRefGoogle Scholar
  52. Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., & King, J. W. (2009). Atlantic forcing of persistent drought in West Africa. Science, 324, 377–380.CrossRefGoogle Scholar
  53. Sidibé, S., & Raimbault, M. (1991). In M. Raimbault & K. Sanogo (Eds.), Les sondages dans la butte de Kawinza I (KWZ 1): Campagne de 1984–1985 (pp. 273–280). Karthala, Paris: Recherches Archéologiques au Mali: Les Sites Protohistoriques de la Zone Lacustre.Google Scholar
  54. Street-Perrott, F. A., Holmes, J. A., Waller, M. P., Allen, M. J., Barber, N. G. H., Fothergill, P. A., Harkness, D. D., Ivanovich, M., Kroon, D., & Perrott, R. A. (2000). Drought and dust deposition in the West African Sahel: a 5500-year record from Kajemarum Oasis, northeastern Nigeria. Holocene, 10, 293–302.CrossRefGoogle Scholar
  55. Talbot, M. R. (1981). Holocene changes in tropical wind intensity and rainfall evidence from southeast Ghana. Quaternary Research, 16, 201–220.CrossRefGoogle Scholar
  56. Talbot, M. R., & Delibrias, G. (1980). A new late Pleistocene-Holocene water level curve for Lake Bosumtwi, Ghana. Earth and Planetary Science Letters, 47, 336–344.CrossRefGoogle Scholar
  57. Togola, T. (1996). Iron age occupation in the Méma region, Mali. African Archaeological Review, 13, 91–110.Google Scholar
  58. Wallerstein, I., with Hopkins, T. K. and Assocs. (1982). World systems analysis: Theory and methodology. Beverly Hills: Sage.Google Scholar
  59. Weber, M. E., Niessen, F., Kuhn, G., & Wiedicke, M. (1997). Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Marine Geology, 136, 151–172.CrossRefGoogle Scholar
  60. Wright, H. (1967). A square-rod piston sampler for lake sediments. Journal of Sedimentary Research, 37, 975–976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of AnthropologyYale UniversityNew HavenUSA
  2. 2.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations