Advertisement

African Archaeological Review

, Volume 32, Issue 2, pp 233–248 | Cite as

A History of Human Impact on Moroccan Mountain Landscapes

  • Rachid Cheddadi
  • Majda Nourelbait
  • Ouafaa Bouaissa
  • Jalal Tabel
  • Ali Rhoujjati
  • José Antonio López-Sáez
  • Francisca Alba-Sánchez
  • Carla Khater
  • Aziz Ballouche
  • Laurent Dezileau
  • Henry Lamb
Original Article

Abstract

The present study aims to review palaeoecological evidence for environmental changes induced by human activities over the last few millennia in the montane landscapes of Morocco. The study is based on well-dated pollen and geochemical records from the Rif and the Middle Atlas mountains, to show spatial and temporal variation in the onset and intensity of exploitation of forest, soil and mineral resources. Before ca. 2000 BP, anthropogenic impact was minimal. At about that time, abrupt changes of the arboreal pollen proportions, with a decline in all tree taxa, indicate a reduction of the forest cover interpreted as being anthropogenic. In the Rif Mountains, increased influx of carbonates (Ca) in the sedimentary records indicates enhanced soil erosion coincident with the reduction in tree cover. In the Middle Atlas, reduced forest cover is linked to geochemical evidence for mining and metallurgy of lead (Pb), copper (Cu) and zinc (Zn). These industrial activities correspond to the expansion of the Roman Empire into Morocco at around AD 40 and show a decline when the Romans were displaced by the Vandals about five centuries later.

Keywords

Morocco Roman Empire Middle Atlas Rif Human activities Cedar forests 

Résumé

Cette étude a pour but d'analyser et de résumer les évidences paléoécologiques des changements environnementaux induits par les activités humaines au cours des derniers millénaires dans les zones montagneuses du Maroc. L'approche est basée sur des enregistrements palynologiques et géochimiques biendatés prélevés dans les montagnes du Rif et du Moyen Atlas. Le but est d'identifier demanière spatialisée les changements qui ont affecté initialement les forêts ainsi que l'intensité de leur exploitation, l'impact sur les sols et les ressources minérales. Avant ca 2000 ans BP, l'impact anthropique était relativement faible. A cette époque, des changements brusques dans la représentation des taxons arborés ainsi qu'une tendance décroissante de leur pourcentage traduisent une réduction de la couverture forestière interprétée comme étant d'origine anthropique. Dans les montagnes du Rif, l'augmentation des flux de carbonates (Ca) dans les enregistrements sédimentairesindique une augmentation de l'érosion des sols qui coïncide avec une réduction ducouvert forestier. Dans le Moyen Atlas, la réduction du couvert forestier est lié à uneévidence géochimique traduisant une exploitation minière et une industrie métallurgique du plomb (Pb), du cuivre (Cu) et du zinc (Zn). Ces activités industrielles sont enregistrées au moment de l'expansion de l'Empire romain au Maroc autour de 40AD, et elles diminuent quand les Romains ont été remplacés par les Vandales environ cinq siècles plus tard.’

Notes

Acknowledgments

RC thanks Jean Maley for the friendly incitement to write the present paper. This work was supported by the French national program EC2CO-Biohefect, “Variabilité paléoclimatique et impact sur les forêts de conifères au Maroc depuis la dernière période glaciaire.” We acknowledge support from the Excellence Research Projects funding programme of the Andalusian government: “Relic-Flora (RNM-7033).” We thank the LMC14 staff (Laboratoire de Mesure du Carbone-14), ARTEMIS national facility, UMS 2572 CNRS-CEA-IRD-IRSN-MCC, for the results obtained with the accelerator mass spectroscopy method.

This is an ISEM contribution no. 2015-097

References

  1. Akdim, B., Julia, R., & Laaouane, M. (2011). Land use change and resource management in the Jnane Mas valley (Khenifra, Middle Atlas, Morocco). Geography and Natural Resources, 32(1), 87–94.CrossRefGoogle Scholar
  2. Arboleya, M. L., Teixell, A., Charroud, M., & Julivert, M. (2004). A structural transect through the High and Middle Atlas of Morocco. Journal of African Earth Sciences, 39, 319–327.CrossRefGoogle Scholar
  3. Ballouche, A. (2013). Contribution à l’histoire récente de la végétation du Bas-Loukkos (Province de Larache, Maroc). Physio-Géo, 7, 67–82.CrossRefGoogle Scholar
  4. Ballouche, A., & Marinval, P. (2003). Données palynologiques et carpologiques sur la domestication des plantes et l’agriculture dans le néolithique ancien du Maroc septentrional. (site de Kaf Taht El-Ghar). Revue D’archéométrie, 27, 49–54.CrossRefGoogle Scholar
  5. Benabid, A. (1985). Les écosystèmes forestiers préforestiers et présteppiques du Maroc: Diversité, répartition biogéographique et problèmes posés par leur aménagement. Forêt Mediterranéenne, 7, 53–64.Google Scholar
  6. Bindler, R. (2006). Mired in the past—looking to the future: geochemistry of peat and the analysis of past environmental changes. Global and Planetary Change, 54(4), 209–221.CrossRefGoogle Scholar
  7. Chillasse, L., & Dakki, M. (2004). Potentialités et statuts de conservation des zones humides du Moyen-Atlas (Maroc), avec référence aux influences de la sécheresse. Sécheresse, 15(4), 337–345.Google Scholar
  8. Cortés, M., Jiménez, F., Simón, M. D., Gibaja, J. F., Faustino, A., Martínez, F., Rodrigo, M., Flores, J. A., Paytan, A., López-Sáez, J. A., Peña-Chocarro, L., Carrión, J. S., Morales, A., Roselló, E., Riquelme, J. A., Dean, R. M., Salgueiro, E., Martínez, R. M., la Rubia, D., de Gracia, J. J., Lozano, M. C., Vera, J. L., Llorente, L., & Bicho, N. F. (2012). The Mesolithic-Neolithic transition in southern Iberia. Quaternary Research, 77, 221–234.CrossRefGoogle Scholar
  9. Damblon, F. (1991). Contribution pollenanalytique à l’histoire des forêts de chêne liège au Maroc: La subéraie de Krimda. Palaeoecology of Africa, 22, 171–183.Google Scholar
  10. Daugas, J. P., El Idrissi, A., Ballouche, A., Marinval, P., & Ouchaou, B. (2008). The Earlier Neolithic in northern Morocco: Documentary, typo-chronological seriation and genetic hypothesis. Bulletin de la Société Préhistorique Française, 105(4), 787–812.CrossRefGoogle Scholar
  11. De Lamotte, F., Saint Bezar, B., & Bracene, R. (2000). The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19, 740–761.CrossRefGoogle Scholar
  12. Dekayir, A., Amouric, M., & Olives, J. (2005). Clay minerals in hydrothermally altered basalts from Middle Atlas, Morocco. Clay Minerals, 40, 67–77.CrossRefGoogle Scholar
  13. Du Dresnay, R. (1988). Recent data on the geology of the Middle Atlas (Morocco). In V. Jacobshagen (Ed.), The Atlas system of Morocco (pp. 293–320). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  14. Elbaz-Poulichet, F., Dezileau, L., Freydier, R., Cossa, D., & Sabatier, P. (2011). A 3500-year record of Hg and Pb contamination in a Mediterranean sedimentary archive (The Pierre Blanche Lagoon, France). Environmental Science & Technology, 45(20), 8642–8647.CrossRefGoogle Scholar
  15. Fady, B., Lefèvre, F., Vendramin, G. G., Ambert, A., Régnier, C., & Bariteau, M. (2008). Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conservation Genetics, 9, 85–95.CrossRefGoogle Scholar
  16. Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L., Domaizon, I., Coissac, E., David, F., Choler, P., Poulenard, J., & Taberlet, P. (2014). Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature Communications, 5, 3211.CrossRefGoogle Scholar
  17. Gil-Romera, G., Carrion, J. S., Pausas, J. G., Sevilla-Callejo, M., Lamb, H. F., Fernandez, S., & Burjachs, F. (2010). Holocene fire activity and vegetation response in south-eastern Iberia. Quaternary Science Reviews, 29, 1082–1092.CrossRefGoogle Scholar
  18. Gómez, F., Beauchamp, W., & Barazangi, M. (2000). Role of Atlas Mountains (northwest Africa) within the African-Eurasian plate-boundary zone. Geology, 28, 775–778.CrossRefGoogle Scholar
  19. Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F., Arnaud, F., Magand, O., Francus, P., & Mélières, M.-A. (2007). High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the western French Alps (Lake Bramant, Grandes Rousses Massif). Quaternary Science Reviews, 26(19–21), 2644–2660.CrossRefGoogle Scholar
  20. Herbig, H. G. (1988). Synsedimentary tectonics in the Northern Middle Atlas (Morocco) during the Late Cretaceous and Tertiary. In V. Jacobshagen (Ed.), The Atlas system of Morocco (pp. 321–337). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  21. Hinaje L., & Ait Brahim, (2002). Les bassins lacustres du Moyen Atlas (Maroc): Un exemple d’activité tectonique polyphasée associée à des structures d’effondrement. Com., Tomo 89. Instituto Geológico e Mineiro (pp. 283–294).Google Scholar
  22. Iversen, J. (1973). The development of Denmark’s nature since the Last Glacial. Danmarks Geologiske Undersøgelse V Række, 7(C), 1–126.Google Scholar
  23. Jalut, G., Dedoubat, J. J., Fontugne, M., & Otto, T. (2009). Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quaternary International, 200(1–2), 4–18.CrossRefGoogle Scholar
  24. Kaplan, J. O., Krumhardt, K. M., & Zimmermann, N. (2009). The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28(27–28), 3016–3034.CrossRefGoogle Scholar
  25. Lamb, H. F., & van der Kaars, S. (1995). Vegetational response to Holocene climatic change: Pollen and palaeolimnological data from the Middle Atlas, Morocco. The Holocene, 5(4), 400–408.CrossRefGoogle Scholar
  26. Lamb, H. F., Damblon, F., & Maxted, R. W. (1991). Human impact on the vegetation of the Middle Atlas, Morocco, during the last 5000 years. Journal of Biogeography, 18, 519–532.CrossRefGoogle Scholar
  27. Lamb, H. F., Roberts, N., Leng, M., Barker, P., Benkaddour, A., & van der Kaars, S. (1999). Lake evolution in a semi-arid montane environment: Responses to catchment change and hydroclimatic variation. Journal of Paleolimnology, 21, 325–343.CrossRefGoogle Scholar
  28. Linstädter, A., & Zielhofer, C. (2010). Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (Olea–Pistacia woodlands, NE Morocco). Journal of Arid Environments, 74, 101–110.CrossRefGoogle Scholar
  29. López-Sáez, J. A., & López-Merino, L. (2008). Antropización y neolitización durante el Holoceno en Marruecos: Una aproximación paleopalinológica. In M. S. Hernández, J. A. Soler, & J. A. López (Eds.), Actas IV Congreso del Neolítico Peninsular. Tomo I (pp. 438–444). Alicante: Museo Arqueológico de Alicante.Google Scholar
  30. López-Sáez, J. A., López-García, P., & Burjachs, F. (2003). Arqueopalinología: Síntesis crítica. Polen, 12, 5–35.Google Scholar
  31. López-Sáez, J. A., López Merino, L., Pérez Díaz, S., & Alba Sánchez, F. (2011a). Paleopaisajes de Andalucía Oriental durante la transición Mesolítico-Neolítico antiguo. In J. F. Gibaja & A. F. Carvalho (Eds.), Os últimos caçadores-recolectores e as primeiras comunidades produtoras do sul da Península Ibérica e do norte de Marrocos. Promontoria Monográfica (Vol. 15, pp. 213–220). Faro: Universidade do Algarve.Google Scholar
  32. López-Sáez, J. A., Pérez, S., & Alba, F. (2011b). Antropización y agricultura en el Neolítico de Andalucía Occidental a partir de la Palinología. Menga. Revista de Prehistoria de Andalucía, 2, 72–85.Google Scholar
  33. López-Sáez, J. A., Abel, D., Bokbot, Y., Peña, L., Alba, F., & El Idrissi, A. (2013). Paisajes neolíticos del noroeste de Marruecos: Análisis arqueopalinológico de la Cueva de Boussaria. In 5° Congresso do Neolítico Peninsular (pp. 92–97). Lisboa: Universidade de Lisboa.Google Scholar
  34. Martin, J. (1981). Le Moyen Atlas central étude géomorphologique. Notes et Mémoires du service Géologique N° 258 bis Rabat, Maroc.Google Scholar
  35. Mather, A. S., Needle, C. L., & Fairbairn, J. (1998). The human drivers of global land cover change: The case of forests. Hydrological Processes, 12, 1983–1994.CrossRefGoogle Scholar
  36. McEvedy, C., & Jones, R. (1978). Atlas of world population history. London: Penguin Books Ltd.Google Scholar
  37. McGregor, H. V., Dupont, L. M., Stuut, J. B. W., & Kuhlmann, H. (2009). Vegetation change, goats, and religion: a 2000-year history of land use in southern Morocco. Quaternary Science Reviews, 28(15), 1434–1448.CrossRefGoogle Scholar
  38. Mercuri, A. M., Sadori, L., & Uzquiano Ollero, P. (2011). Mediterranean and North African cultural adaptations to mid-Holocene environmental and climatic changes. The Holocene, 21(1), 189–206.CrossRefGoogle Scholar
  39. Michard, A., Negro, F., Saddiqi, O., Bouybaouene, M. L., Chalouan, A., Montigny, R., & Goffè, B. (2006). Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus de l’Académie des Sciences Serie IIA - Earth Planetary Science, 338, 92–114.Google Scholar
  40. Mighall, T., Abrahams, P., Grattan, J., Hayes, D., Timberlake, S., & Forsyth, S. (2002). Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. Science of the Total Environment, 292(1–2), 69–80.CrossRefGoogle Scholar
  41. Morales, J., Pérez-Jordà, G., Peña-Chocarro, L., Zapata, L., Ruiz Alonso, M., López-Sáez, J. A., & Linstädter, J. (2013). The origins of agriculture in north-west Africa: Macro-botanical remains from Epipalaeolithic and Early Neolithic levels of Ifri Oudadane (Morocco). Journal of Archaeological Science, 40, 2659–2669.CrossRefGoogle Scholar
  42. Newman, H. R. (2012). 2010 Minerals yearbook. In USGS (Ed.), U.S. Geological survey minerals yearbook (pp. 1–9).Google Scholar
  43. Nour El Bait, M., Rhoujjati, A., Eynaud, F., Benkaddour, A., Dezileau, L., Wainer, K., Goszlar, T., Khater, C., Tabel, J., & Cheddadi, R. (2014). An 18,000 year pollen and sedimentary record from the cedar forests of the Middle Atlas, Morocco. Journal of Quaternary Science, 29(5), 417–426.Google Scholar
  44. Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, J.-L., Brugiapaglia, E., Sadori, L., Garfi, G., Kouli, K., Ioakim, C., & Combourieu-Nebout, N. (2013). Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data. Climate of the Past, 9(3), 1233–1252.CrossRefGoogle Scholar
  45. Pompeani, D., Abbott, M., Bain, D., DePasqual, S., & Finkenbinder, M. (2014). Copper mining on Isle Royale 6500–5400 years ago identified using sediment geochemistry from McCargoe Cove, Lake Superior. The Holocene, 25(2), 253–262.CrossRefGoogle Scholar
  46. Pongratz, J., Reick, C. H., Raddatz, T., & Claussen, M. (2009). Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochemical Cycles, 23(4).Google Scholar
  47. Reille, M. (1977). Contribution pollenanalytique à l’histoire Holocène de la végétation des montagnes du Rif (Maroc Septentrional). Bulletin AFEQ, 50(1), 53–76.Google Scholar
  48. Reimer, P. J., Bard, E., Bayliss, A., Bec, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., & van der Plicht, J. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon, 55(4), 1869–1887.CrossRefGoogle Scholar
  49. Rhoujjati A. (2007). Changements paléoenvironnementaux et paléoclimatiques depuis 21.000 ans 14 C dans le Moyen Atlas marocain: Les lacs Ifrah et Iffer. Thèse d’Etat, Université Chouaib Doukkali.Google Scholar
  50. Roberts, N., Reed, J. M., Leng, M. J., Kuzucuoglu, C., Fontugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt, E., & Karabiyikoglu, M. (2001). The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene, 11, 721–736.CrossRefGoogle Scholar
  51. Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261–293.CrossRefGoogle Scholar
  52. Sadiqi, F. (1997). The place of Berber in Morocco. International Journal of the Sociology of Language, 123(1), 7–21.CrossRefGoogle Scholar
  53. Sadori, L., Jahns, S., & Peyron, O. (2011). Mid-Holocene vegetation history of the central Mediterranean. The Holocene, 21(1), 117–129.CrossRefGoogle Scholar
  54. Shotyk, W. (1996a). Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water, Air, and Soil Pollution, 90(3–4), 375–405.CrossRefGoogle Scholar
  55. Shotyk, W. (1996b). Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environmental Reviews, 4(2), 149–183.CrossRefGoogle Scholar
  56. Taiqui, L., & Cantarino, C. M. (1997). Eléments historiques d’analyse écologique des paysages montagneux du Rif Occidental (Maroc). Mediterranea. Serie de Estudios Biológicos, 16, 23–35.Google Scholar
  57. Teixell, A., Arboleya, M. L., Julivert, M., & Charroud, M. (2003). Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics, 22(5), 1051–1064.Google Scholar
  58. Vicente, A. M., & Alés, R. F. (2006). Long term persistence of dehesas. Evidences from history. Agroforestery Systems, 67, 19–28.Google Scholar
  59. Zapata, L., López-Sáez, J. A., Ruiz-Alonso, M., Linstadter, J., Pérez-Jordà, G., Morales, J., & Peña-Chocarro, L. (2013). Holocene environmental change and human impact in NE Morocco: palaeobotanical evidence from Ifri Oudadane. The Holocene, 23(9), 1286–1296.CrossRefGoogle Scholar
  60. Zouagui, A., Benmansour, M., Amenzou, N., Nouira, A., Sabir, M., Benjelloun, H., & Benkadad, A. (2012). Application de la technique de 137 Cs à l’estimation de l’érosion hydrique dans le bassin versant de Moulay Bouchta, Rif occidental, Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 1, 53–58.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rachid Cheddadi
    • 1
  • Majda Nourelbait
    • 2
  • Ouafaa Bouaissa
    • 1
  • Jalal Tabel
    • 1
  • Ali Rhoujjati
    • 3
  • José Antonio López-Sáez
    • 4
  • Francisca Alba-Sánchez
    • 5
  • Carla Khater
    • 6
  • Aziz Ballouche
    • 7
  • Laurent Dezileau
    • 8
  • Henry Lamb
    • 9
  1. 1.Institut des Sciences de l’Évolution, UMR UM2-CNRS-IRD 5554University of Montpellier 2Montpellier Cedex 05France
  2. 2.Laboratoire Géosciences Marines et Sciences des Sols, Unité associée au CNRST (URAC 45), Département de GéologieUniversité Chouaib DoukkaliEl JadidaMorocco
  3. 3.Faculté des Sciences et Techniques, Département de GéologieLabo. Géo-Ressources (URAC 42)GuélizMorocco
  4. 4.G.I. Arqueobiología, Instituto de Historia, CCHSCSICMadridSpain
  5. 5.Departamento de Botánica, Facultad de CienciasUniversidad de GranadaGranadaSpain
  6. 6.Center for Remote SensingNational Council for Scientific ResearchBeirutLebanon
  7. 7.Dépt de Géographie, LETG-Angers LEESA, UMR 6554 CNRSUniversité d’AngersAngersFrance
  8. 8.Geosciences Montpellier, CNRS, UMR 5243Université Montpellier 2Montpellier Cedex 05France
  9. 9.Department of Geography and Earth SciencesAberystwyth UniversityAberystwythUK

Personalised recommendations