Advertisement

African Archaeological Review

, Volume 31, Issue 3, pp 447–478 | Cite as

Catchment Survey in the Karonga District: a Landscape-Scale Analysis of Provisioning and Core Reduction Strategies During the Middle Stone Age of Northern Malawi

  • Jessica C. ThompsonEmail author
  • Alex Mackay
  • Victor de Moor
  • Elizabeth Gomani-Chindebvu
Original Article

Abstract

The landscape of northern Malawi is defined by several river catchments that drain from the highlands in the west into Lake Malawi in the east. Many thousands of Middle Stone Age (MSA) artefacts are present on the surface, in particular, in areas where sedimentary units assigned to the Chitimwe Beds are exposed. The unique configuration of the region and its exposures makes it possible to address landscape-scale questions about MSA behaviour that augment information derived from excavated assemblages. In this study, data are derived from initial results of surveys conducted in 2012 which focussed on how lithic raw materials (in the form of cobbles) and core technology (in the form of mapped and analysed cores) are distributed across the landscape relative to different landforms, geologies and one another. These data are used to examine if differences in core reduction technology occur in different catchment areas with different raw material quantities and qualities, and to test hypotheses about lithic provisioning scenarios. This allows for examination of core reduction technologies in relation to raw material sources via surface finds, on a larger regional scale than is usually possible from excavations. Different catchments show differences in the type and quality of the raw material, with higher-quality quartzites occurring in the North Rukuru catchment and declining to the south. This is reflected in the types of materials that MSA people chose to use for the production of stone tools. However, differences in raw material selection and distance from cobbles did not influence preferred core reduction strategies, and most cores cluster together near cobble sources. This suggests that throughout the MSA in the study area, core reduction strategies were highly conserved even while raw material use remained flexible, and cores were not regularly transported as part of a provisioning strategy.

Keywords

Middle Stone Age Malawi Survey Lithic core analysis Landscape Lithic raw materials 

Resumé

Le paysage du nord du Malawi est caractérisé par la présence de divers bassins hydrographiques des rivières qui s’écoulent des régions montagneuses de l’ouest vers le Lake Malawi, à l’est. Des milliers d’artefacts de l’Âge de la pierre moyen (MSA) sont dispersés dans ce paysage, en particulier dans les zones où les sédiments de Chitimwe Beds sont exposés. La richesse et le caractère unique de ce paysage, permettent de soulever de nouvelles questions concernant le mode de vie des hommes de MSA. Ces nouvelles questions enrichissent les informations apportées par les fouilles. Dans cette recherche, des données, sur lesquelles celle-ci a été basée, proviennent de ‘surveys’ effectuées en 2012 qui avaient pour objectif de découvrir la manière dont la matière première lithique (sous forme de pavés) et les industries lithiques (sous la forme de nucléus) sont réparties à travers le paysage. Ces données ont été tout d’abord utilisées pour examiner s’il existe des différences dans le débitage sur nucléus dans diverses zones à bassins hydrographiques ayant des quantités et des qualités de matière première diverses et ensuite pour vérifier les hypothèses concernant les différentes options d’approvisionnement lithique. Les résultats mettent en lumière que différents bassins hydrographiques laissent entrevoir des différences dans la qualité et la quantité de matière première. Les quartzites de meilleure qualité sont présents dans le bassin hydrographique de la rivière North Rukuru mais cette présence diminue en allant vers le sud. Ceci est reflété dans le choix du type de matière première fait par les hommes MSA pour la production de leurs outils. Néanmoins, les différences dans la sélection de matière première et la distance des pavés n’ont pas eu d’influences sur le débitage sur nucléus qu’ils préféraient. Cela suggère de ce fait que tout au long de MSA, les techniques de débitage du nord du Malawi étaient hautement conservatives et cela en dépit de la diversité de matière première présente et les nucléus n’étaient pas régulièrement transportés comme faisant partie d’une stratégie d’approvisionnement.

Notes

Acknowledgments

This article could not have been written without the help of many people. Permits from the Department of Antiquity of Malawi were provided by Dr. Elizabeth Gomani-Chindebvu as Director of Culture and Potiphar Kaliba and Chrissy Chiumia as subsequent Directors of Antiquities. We are grateful to Davie Simengwa, James Flittner and Kingsley Pamanda, for assistance on the surveys. We are also grateful to Sheila Nightingale for the regular exchange of ideas about lithic analysis. We owe a special word of thanks to Menno Welling and Andrew Zipkin, who assisted in many ways with developing the survey methods. Preliminary age estimates summarised and informally reported here were from Dr. Jeong-Heon Choi and Prof. Steven Forman. Dr. David Wright, Prof. Ramón Arrowsmith, Marina Bravo Foster, Flora Schilt, and Scott Robinson were always ready to give us advice on many geomorphologic and geologic issues. The chi-squared trend value formula was kindly provided by Dr. Tyler Faith. This manuscript benefited greatly from comments by two anonymous reviewers. Topographic data were from ASTER GDEM, a product of METI and NASA. Funding for this part of MEMSAP work was provided by the Australian Research Council DP110101305, the National Geographic-Waitt Foundation W115-10, a charitable donation by Thomas Jones, and The University of Queensland.

References

  1. Ambrose, S. H. (1998). Chronology of the Later Stone Age and food production in East Africa. Journal of Archaeological Science, 25, 377–392.CrossRefGoogle Scholar
  2. Andrefsky, W. A. J. (1994). Raw material availability and the organization of technology. American Antiquity, 59, 21–34.CrossRefGoogle Scholar
  3. Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropoloogical Archaeology, 26, 198–223.CrossRefGoogle Scholar
  4. Bamforth, D. B. (1986). Technological efficiency and tool curation. American Antiquity, 51, 38–50.CrossRefGoogle Scholar
  5. Bamforth, D. B. (1991). Technological organisation and hunter-gatherer land use. American Antiquity, 56, 216–234.CrossRefGoogle Scholar
  6. Bar-Yosef, O., & Dibble, H. L. (1995). Preface. In H. L. Dibble & O. Bar-Yosef (Eds.), The definition and interpretation of Levallois technology (pp. ix–xiii). Madison: Prehistory Press.Google Scholar
  7. Basell, L. S. (2008). Middle Stone Age (MSA) site distributions in eastern Africa and their relationship to quaternary environmental change, refugia and the evolution of Homo sapiens. Quaternary Science Reviews, 27, 2484–2498.CrossRefGoogle Scholar
  8. Baumler, M. F. (1988). Core reduction, flake production, and the Middle Paleolithic industry of Zobiste (Yugoslavia). In H. L. Dibble & A. Montet-White (Eds.), Upper Pleistocene prehistory of Western Eurasia (pp. 255–274). Philadelphia: University of Pennsylvania.Google Scholar
  9. Binford, L. R. (1979). Organization and formation processes: Looking at curated technologies. Journal of Anthropological Research, 35, 255–273.Google Scholar
  10. Binford, L. R. (1980). Willow smoke and dogs tails: Hunter-gatherer settlements systems and archaeological site formation. American Antiquity, 45, 4–20.CrossRefGoogle Scholar
  11. Bleed, P. (1986). The optimal design of hunting weapons: Maintainability or reliability. American Antiquity, 51, 737–747.CrossRefGoogle Scholar
  12. Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S., & Russell, J. (2012). The environmental context for the origins of modern human diversity: A synthesis of regional variability in African climate 150,000–30,000 years ago. Journal of Human Evolution, 62, 563–592.CrossRefGoogle Scholar
  13. Boëda, E. (1994). Le concept Levallois: Variabilité des methodes. Paris: CNRS Éditions.Google Scholar
  14. Bordes, F. (1961). Typologie du Paleolithique ancien et moyen. Institut de Préhistoire de l’Université de Bordeaux Mémoire, 1, 1–86.Google Scholar
  15. Bousman, C. B. (1993). Hunter-gatherer adaptations, economic risk and tool design. Lithic Technology, 18, 59–86.Google Scholar
  16. Braun, D. R., Rogers, M. J., Harris, J. W., & Walker, S. J. (2008). Landscape-scale variation in hominin tool use: Evidence from the Developed Oldowan. Journal of Human Evolution, 55, 1053–1063.CrossRefGoogle Scholar
  17. Bretzke, K., Kandel, A. W., & Conard, N. J. (2011). Deducing landuse patterns from archaeological survey data. Chronique Archéologique en Syrie, 5, 11–18.Google Scholar
  18. Chiotti, L., Olszewski, D. I., Dibble, H. L., McPherron, S. P., Schurmans, U. A., & Smith, J. R. (2007). Paleolithic abydos: Reconstructing individual behaviors across the High Desert landscape. In Z. Hawass & J. Richards (Eds.), The archaeology and art of Egypt: Essays in honor of David B. O’Connor (pp. 169–183). Cairo: Supreme Council of Antiquities Press.Google Scholar
  19. Chiotti, L., Dibble, H. L., Olszewski, D. I., McPherron, S. P., & Schurmans, U. A. (2009). Middle Palaeolithic lithic technology from the Western High Desert of Egypt. Journal of Field Archaeology, 34, 307–318.CrossRefGoogle Scholar
  20. Clark, J. D. (1966). Archaeology in Malawi. Society of Malawi Journal, 19, 15–25.Google Scholar
  21. Clark, A. M. B. (1999). Late Pleistocene technology at Rose Cottage Cave: A search for modern behavior in an MSA context. African Archaeological Review, 16, 93–119.CrossRefGoogle Scholar
  22. Clark, J. D., & Haynes, C. V. J. (1970). An elephant butchery site at Mwanganda’s Village, Karonga, Malawi, and its relevance for Palaeolithic archaeology. World Archaeology, 1, 390–411.CrossRefGoogle Scholar
  23. Clark, J. D., Stephens, E. A., & Coryndon, S. C. (1966). Pleistocene fossiliferous lake beds of the Malawi (Nyasa) rift: A preliminary report. American Anthropologist, 68, 46–87.CrossRefGoogle Scholar
  24. Clark, J. D., Haynes, C. V., Mawby, J. E., & Gautier, A. (1970). Interim report on palaeoanthropological investigations in the Lake Malawi Rift. Quaternaria, 13, 305–354.Google Scholar
  25. Clarkson, C. (2013). Measuring core reduction using 3D flake scar density: A test case of changing core reduction at Klasies River Mouth, South Africa. Journal of Archaeological Science, 40, 4348–4357.CrossRefGoogle Scholar
  26. Cohen, A., Stone, J. R., Beuning, K. R. M., Park, L. E., Rainthal, P. N., Dettman, D., Scholz, C. A., Johnson, T. C., King, J. W., Talbot, M. R., Brown, E. T., & Ivory, S. J. (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Science, 104, 16422–16427.CrossRefGoogle Scholar
  27. Collard, M., Kemery, M., & Banks, S. (2005). Causes of toolkit variation among hunter-gatherers: A test of four competing hypotheses. Canadian Journal of Archaeology, 29, 1–19.Google Scholar
  28. Conard, N. J., Masri, M., Bretzke, K., Napierale, H., & Kandel, A. W. (2010). Modeling Middle Palaeolithic landuse in Damascus Province, Syria. In N. J. Conard & A. Delagnes (Eds.), Settlement dynamics of the Middle Palaeolithic and Middle Stone Age (pp. 123–144). Tübingen: Kerns Verlag.Google Scholar
  29. Crabtree, D. E. (1972). An introduction to flintworking, occasional papers of the Idaho State University Museum. Pocatello, Idaho: Idaho State University Museum.Google Scholar
  30. De Loecker, D. (2006). Beyond the site: The Saalian archaeological record at Maastricht-Belvédère (The Netherlands). Leiden: Leiden University.Google Scholar
  31. Department of Environment, C. C. a. W. N. (2010). In C. C. State of New South Wales and Department of Environment, and Water (Ed.), Code of practice for archaeological investigation of Aboriginal objects in New South Wales, Australia. Sydney South: Department of Environment, Climate Change and Water NSW.Google Scholar
  32. Dibble, H. (1995). Middle Paleolithic scraper reduction: Background, clarification, and review of the evidence to date. Journal of Archaeological Method and Theory, 2, 299–368.CrossRefGoogle Scholar
  33. Dietl, H., Kandel, A. W., & Conard, N. (2005). Middle Stone Age settlement and land use at the open-air sites of Geelbek and Anyskop, South Africa. Journal of African Archaeology, 3, 233–244.CrossRefGoogle Scholar
  34. Dunnell, R. (1992). The notion site. In J. Rossignol & L. Wandsnider (Eds.), Space, time and archaeological landscapes (pp. 21–41). New York: Plenum Press.CrossRefGoogle Scholar
  35. Fanning, P., & Holdaway, S. (2001). Stone artifact scatters in Western NSW, Australia: Geomorphic controls on artifact size and distribution. Geoarchaeology, 16, 667–686.CrossRefGoogle Scholar
  36. Fanning, P., Holdaway, S., Rhodes, E. J., & Bryant, T. (2009). The surface archaeological record in arid Australia: Geomorphic controls on preservation, exposure, and visibility. Geoarchaelogy, 24, 121–146.CrossRefGoogle Scholar
  37. Foley, R. A. (1981). Off-site archaeology and human adaptations in Eastern Africa: The Amboseli, southern Kenya. Oxford: BAR.Google Scholar
  38. Foley, R., & Lahr, M. M. (2003). On stony ground: Lithic technology, human evolution, and the emergence of culture. Evolutionary Anthropology: Issues, News, and Reviews, 12, 109–122.CrossRefGoogle Scholar
  39. Goodwin, A. J. H., & Van Riet Lowe, C. (1929). The Stone Age cultures of South Africa. Annals. South African Museum, 27, 1–289.Google Scholar
  40. Gramly, R. M. (1980). Raw material source areas and ‘curated’ tool assemblages. American Antiquity, 45, 823–833.CrossRefGoogle Scholar
  41. Hallinan, E. (2013). Stone age landscape use in the Olifants River Valley, Western Cape. Masters thesis, University of Cape Town.Google Scholar
  42. Henshilwood, C. S., & Marean, C. W. (2003). The origin of modern human behavior: Critique of the models and their test implications. Current Anthropology, 44, 627–651.CrossRefGoogle Scholar
  43. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. J., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  44. Holdaway, S., & Fanning, P. (2008). Developing a landscape history as part of a survey strategy: A critique of current settlement system approaches based on case studies from western New South Wales, Australia. Journal of Archaeological Method and Theory, 15, 167–189.CrossRefGoogle Scholar
  45. Holdaway, S., Witter, D., Fanning, P., Musgrave, R., Cochrane, G., Doelman, T., Greenwood, S., Pigdon, D., & Reeves, J. (1998). New approaches to open site spatial archaeology in Sturt National Park, New South Wales, Australia. Archaeology in Oceania, 33, 1–19.Google Scholar
  46. Holdaway, S. J., Fanning, P. C., & Witter, D. C. (2000). Prehistoric aboriginal occupation of the rangelands: Interpreting the surface archaeological record of far western New South Wales, Australia. Rangeland Journal, 22, 44–57.CrossRefGoogle Scholar
  47. Hutcheson, J. C. C., & Callow, P. (1986). The flint debitage and cores. In P. Callow & J. M. Cornford (Eds.), La Cotte de St. Brelade 1961–1978: Excavations by C.B.M. McBurney (pp. 231–249). Norwich: Geo Books.Google Scholar
  48. Isaac, G. L. (1977). Olorgesailie. Chicago: University of Chicago.Google Scholar
  49. Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R., & Wadley, L. (2008). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322, 733–735.CrossRefGoogle Scholar
  50. Juwayeyi, Y., & Betzler, C. G. (1995). Archaeology of the Malawi Rift: The search continues for Early Stone Age occurrences in the Chiwondo Beds, northern Malawi. Journal of Human Evolution, 28, 115–116.CrossRefGoogle Scholar
  51. Kandel, A. W., & Conard, N. J. (2012). Settlement patterns during the Earlier and Middle Stone Age around Langebaan Lagoon, Western Cape (South Africa). Quaternary International, 270, 15–29.CrossRefGoogle Scholar
  52. Kaufulu, Z., Vrba, E. S., & White, T. D. (1981). Age of the Chiwondo Beds, Northern Malawi. Annals of the Transvaal Museum, 33, 1–8.Google Scholar
  53. Kelly, R. L. (1995). The foraging spectrum: Diversity in hunter-gatherer lifeways. Washington: Smithsonian Institution Press.Google Scholar
  54. Kuhn, S. L. (1992). On planning and curated technologies in the Middle Paleolithic. Journal of Anthropological Research, 48, 185–214.Google Scholar
  55. Kuhn, S. L. (1995). Mousterian lithic technology: An ecological perspective. Princeton: Princeton University Press.Google Scholar
  56. Kuijt, I., Prentiss, W. C., & Pokotylo, D. L. (1995). Bipolar reduction: An experimental study of debitage variability. Lithic Technology, 20, 116–127.Google Scholar
  57. Kuman, K., Le Baron, J. C., & Gibbon, R. J. (2005). Earlier Stone Age archaeology of the Vhembe-Dongola National Park (South Africa) and vicinity. Quaternary International, 129, 23–32.CrossRefGoogle Scholar
  58. Mackay, A. (2005). Informal movements: Changing mobility patterns at Ngarrabullgan, Cape York Australia. In C. Clarkson & L. Lamb (Eds.), Lithics down under: Recent Australian approaches to lithic reduction, use and classification (pp. 95–108). Oxford: Archaeo Press.Google Scholar
  59. Mackay, A., Sumner, A., Jacobs, Z., Marwick, B., Bluff, K., Shaw, M. (In press). Putslaagte 1 (PL1), the Doring River, and the later Middle Stone Age in southern Africa’s winter rainfall zone. Quaternary International.Google Scholar
  60. Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59, 425–443.CrossRefGoogle Scholar
  61. Marean, C. W., & Assefa, Z. W. (2005). The Middle and Upper Pleistocene African record for the biological and behavioral origins of modern humans. In A. Stahl (Ed.), African archaeology: A critical introduction (pp. 93–129). Oxford: Blackwell.Google Scholar
  62. McBrearty, S. (1988). The Sangoan-Lupemban and Middle Stone Age sequence at the Muguruk site, western Kenya. World Archaeology, 19, 388–420.CrossRefGoogle Scholar
  63. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.CrossRefGoogle Scholar
  64. Mitchell, P. (1994). Understanding the MSA/LSA transition: The pre-20,000 BP assemblages from new excavations at Sehonghong Rock Shelter, Lesotho. Southern African Field Archaeology, 3, 15–25.Google Scholar
  65. Nelson, M. (1991). The study of technological organization. Archaeological Method and Theory, 3, 57–100.Google Scholar
  66. Olszewski, D. I., Dibble, H. L., Schurmans, U. A., McPherron, S. P., & Smith, J. R. (2005). High desert paleolithic survey at Abydos, Egypt. Journal of Field Archaeology, 30(3), 283–303.CrossRefGoogle Scholar
  67. Opperman, H. (1996). Strathalan Cave B, north-eastern Cape Province, South Africa: Evidence for human behaviour 29,000–26,000 years ago. Quaternary International, 33, 45–53.CrossRefGoogle Scholar
  68. Parry, W. J., & Kelly, R. L. (1987). Expedient core technology and sedentism. In J. K. Johnson & C. A. Morrow (Eds.), The organization of core technology (pp. 285–304). Boulder: Westview Press.Google Scholar
  69. Porat, N., Chazan, M., Grün, R., Aubert, M., Eisenmann, V., & Horwitz, L. K. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science, 37, 269–283.CrossRefGoogle Scholar
  70. Read, D. (2008). An interaction model for resource implement complexity based on risk and number of annual moves. American Antiquity, 73, 599–625.Google Scholar
  71. Riel-Salvatore, J., & Barton, M. (2004). Late Pleistocene technology, economic behavior, and land-use dynamics in Southern Italy. American Antiquity, 69, 257–274.CrossRefGoogle Scholar
  72. Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A., Overpeck, J. T., Talbot, M. R., Brown, E. T., Kalindekafe, L., Amoako, P. Y. O., et al. (2007). East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proceedings of the National Academy of Science, 104, 16416–16421.CrossRefGoogle Scholar
  73. Scholz, C. A., Cohen, A. S., Johnson, T. C., King, J., Talbot, M. R., & Brown, E. T. (2011). Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project—an overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 3–19.CrossRefGoogle Scholar
  74. Straus, L. G. (1990). Underground archaeology: Perspectives on caves and rockshelters. Archaeological Method and Theory, 2, 255–304.Google Scholar
  75. Thompson, J. C., Mackay, A., Wright, D. K., Welling, M., Greaves, A., Gomani-Chindebvu, E., & Simengwa, D. (2012). Renewed investigations into the Middle Stone Age of northern Malawi. Quaternary International, 270, 129–139.CrossRefGoogle Scholar
  76. Thompson, J. C., Welling, M., & Gomani-Chindebvu, E. (2013a). Using GIS to integrate old and new archaeological data from Stone Age deposits in Karonga, Malawi. International Journal of Heritage in the Digital Era, 2, 611–630.CrossRefGoogle Scholar
  77. Thompson, J. C., Zipkin, A., Nightingale, S., Wright, D. K., Choi, J.-H., Mackay, A., Welling, M., & Gomani-Chindebvu, E. (2013b). New discoveries at old sites: The legacy of J. Desmond Clark in Karonga, Malawi. PaleoAnthropology, A, 36.Google Scholar
  78. Torrence, R. (1989). Stone tools as optimal solutions. In R. Torrence (Ed.), Time, energy and stone tools (pp. 1–6). Cambridge: Cambridge University Press.Google Scholar
  79. Torrence, R., & Bailey, G. (1983). Time budgeting and hunter-gather technology. In G. Bailey (Ed.), Hunter-gatherer economy in prehistory: A European perspective (pp. 11–22). Cambridge: Cambridge University Press.Google Scholar
  80. Trauth, M. H., Maslin, M. A., Deino, A. L., Junginger, A., Lesoloyia, M., Odada, E. O., Daniel, O., Olago, F., Olaka, L. A., Strecker, M. R., & Tiedemann, R. (2010). Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quaternary Science Reviews, 29, 2981–2988.CrossRefGoogle Scholar
  81. Tryon, C. A. (2006). “Early” Middle Stone Age lithic technology of the Kapthurin Formation (Kenya). Current Anthropology, 47, 367–375.CrossRefGoogle Scholar
  82. Tryon, C. A. (2010). How the geological record affects our reconstructions of Middle Stone Age settlement patterns: the case of alluvial fans in Baringo, Kenya. In N. Conard & A. Delangnes (Eds.), Settlement dynamics of the Middle Paleolithic & Middle Stone Age, volume III (pp. 39–66). Tübingen: Kerns Verlag.Google Scholar
  83. Tryon, C. A., & McBrearty, S. (2002). Tephrostratigraphy and the Acheulian to Middle Stone Age transition in the Kapthurin Formation, Kenya. Journal of Human Evolution, 42, 211–236.CrossRefGoogle Scholar
  84. Tryon, C. A., & McBrearty, S. (2006). Tephrostratigraphy of the Bedded Tuff Member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later middle Pleistocene. Quaternary Research, 65, 492–507.CrossRefGoogle Scholar
  85. Tryon, C. A., Roach, N. T., & Logan, A. V. (2008). The Middle Stone Age of the northern Kenyan Rift: Age and context of new archaeological sites from the Kapedo Tuffs. Journal of Human Evolution, 55, 652–664.CrossRefGoogle Scholar
  86. Van Peer, P., & Vermeersch, P. M. (2007). The place of Northeast Africa in the early history of modern humans: New data and interpretations on the Middle Stone Age. In P. Mellars, K. Boyle, O. Bar-Yosef, & C. B. Stringer (Eds.), Rethinking the human revolution. New behavioural and biological perspectives on the origin and dispersal of modern humans (pp. 187–198). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  87. Wendorf, F., & Schild, R. (1976). Prehistory of the Nile Valley. New York: Academic.Google Scholar
  88. White, B., & McDonald, J. (2010). Lithic artefact distribution in the Rouse Hill Development Area, Cumberland Plain, New South Wales. Australian Archaeology, 70, 29–38.Google Scholar
  89. Wright, D. K., Thompson, J. C., Mackay, A., Welling, M., Forman, S., Price, G., Zhao, J.-X., Cohen, A., Malijani, O., & Gomani-Chindebvu, E. (2014). Renewed geoarchaeological investigations of Mwanganda’s Village (Elephant Butchery Site), Karonga, Malawi. Geoarchaeology, 29, 98–120.CrossRefGoogle Scholar
  90. Yellen, J., Brooks, A. S., Helgren, D., Tappen, M., Ambrose, S., Bonnefille, R., Feathers, J., Goodfriend, G., Ludwig, K., Renne, P., & Stewart, K. (2005). The archaeology of Aduma Middle Stone Age sites in the Awash Valley, Ethiopia. PaleoAnthropology, 10, 25–100.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jessica C. Thompson
    • 1
    Email author
  • Alex Mackay
    • 2
  • Victor de Moor
    • 3
  • Elizabeth Gomani-Chindebvu
    • 4
  1. 1.School of Social Science, Archaeology ProgramThe University of QueenslandBrisbaneAustralia
  2. 2.Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
  3. 3.African Heritage Ltd.—Research & ConsultancyZombaMalawi
  4. 4.Malawi Department of CultureTourism HouseLilongwe 3Malawi

Personalised recommendations