Advertisement

African Archaeological Review

, Volume 31, Issue 1, pp 45–58 | Cite as

Weathering of Calcarenite Monuments at Roman and Byzantine Archaeological Sites at Sabratha, Northwestern Libya: A Pilot Study

  • Adam El-Shahat
  • Haithem Minas
  • Sadek Khomiara
Original Article

Abstract

The Roman and Byzantine monuments at Sabratha in northwest Libya represent cultural heritage of remarkable global significance. This report describes the weathering damage of calcarenites, the most dominant stone type used in the construction of monuments in the ancient city of Sabratha. Stone loss, particularly alveolar weathering, notching and breakout of compact stone fragments, dominates deterioration phenomena. Other weathering forms include stone detachment (granular disintegration into sand) and fractures. Most of the studied monuments are also severely affected by biodeterioration, due to microorganism colonization that appears as biofilm. Both the low durability of the calcarenites and the marine environment with characteristic humidity and salt-rich marine spray are the important factors contributing to stone weathering. The results obtained in this pilot study may be used as a guideline for future restoration works.

Keywords

Calcarenite weathering forms Roman and Byzantine monuments Sabratha Libya Stone conservation 

Résumé

Les monuments romains et byzantins à Sabratha dans le nord-ouest de la Libye représentent du patrimoine culturel de valeur mondiale remarquable. Ce rapport décrit les dommages par météorisation des calcarénites, le type de pierre le plus dominant utilisé à la construction des monuments de la ville ancienne de Sabratha. La perte de pierre, la météorisation alvéolaire en particulier, l’entaillage et la fragmentation de pierre compacte dominent les phénomènes de dégradation. D’autres formes d’altération incluent les détachements de pierre (désintégration granulaire au sable) et des fractures. La plupart des monuments étudiés est gravement touchés par la biodégradation suite à la colonisation par des micro-organismes, lesquels apparaissent en forme de biofilm. La faible durabilité des calcarénites ainsi que l’environnement maritime avec l’humidité caractéristique et l’éclaboussure riche en sel marin sont les facteurs importants contribuant à la météorisation des pierres. Les résultats obtenus par cette étude pilote peuvent être utilisés comme guide pour les futurs travaux de restauration.

Notes

Acknowledgments

The authors would like to express their gratitude to the Ministry of Higher Education, Libya, for the support of the field work and laboratory studies. The authors are thankful to Dr. Farid Makroum, Mansoura University, Egypt, for the French translation of the abstract. The invaluable assistance of Dr. Tarek Anan, Mansoura University, is gratefully acknowledged. The paper was substantially improved by critical comments and through revision by two anonymous reviewers, to whom we are most grateful.

References

  1. Abd El-Tawab, N. A. (2012). Degradation and conservation of marble in the Greek Roman Hadrianic baths in Leptis Magna, Libya. International Journal of Conservative Science, 3, 163–178.Google Scholar
  2. Abu-Ella, N. A. (2006). Sedimentological, mineralogical and geomorphological studies on the Quaternary sediments, west Tripoli, Libya. Unpublished PhD thesis, Cairo University.Google Scholar
  3. Bell, F. G. (1993). Durability of carbonate rocks as building stone with comments on its preservation. Environmental Geology, 21, 187–200.CrossRefGoogle Scholar
  4. Benavente, D., Garcia del Cura, M. A., Bernabeu, A., & Ordonez, S. (2001). Quantification of salt weathering in porous stone using an experimental continuous partial immersion method. Engineering Geology, 59, 313–325.CrossRefGoogle Scholar
  5. Bennett, P., & Barker, G. (2011). Protecting Libya’s archaeological heritage. African Archaeological Review, 28(1), 5–25.CrossRefGoogle Scholar
  6. Cassar, J. (2002). Deterioration of the Globigerina limestone of the Maltese Islands. In S. Siegesumnd, T. Weiss, & A. Volbrecht (Eds.), Natural stone, weathering phenomena, conservation strategies and case studies (pp. 33–94). London: Geological Society, Special Publications.Google Scholar
  7. Charola, E. A. (2000). Salts in the deterioration of porous material: An overview. Journal of the Institute of American Conservators, 30, 327–343.CrossRefGoogle Scholar
  8. Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin, 54, 207–250.Google Scholar
  9. El-Bakai, M. T. (1997). Petrography and palaeoenvironment of the Sidi As Sid Formation in Northwest Libya. Petroleum Research Centre, Tripoli, Libya. Petroleum Research Journal, 9, 9–26.Google Scholar
  10. El-Baruni, S. S. (2003). An evaluation study of the water resources in the Jifarah plain. In M. J. Salem, K. H. Oun, & H. M. Seddiq. (Eds.). The geology of northwest Libya (vol. 3, pp. 299-310). Second Symposium on the Sedimentary Basins of Libya, November 6-8, 2000. Tripoli: Earth Science Society of Libya.Google Scholar
  11. El-Tantawi, A. M. M. (2005). Climate change in Libya and desertification of Jifara Plain using geographical information system and remote sensing techniques. Published PhD thesis, Johannes Gutenberg University.Google Scholar
  12. Fitzner, B. (2002). Damage diagnosis on stone monuments—in situ investigation and laboratory studies. Proceedings of the International Symposium of the Conservation of the Bangudae Petroglyph, 15-07-2002 (pp. 29–71). Ulsan City: Seoul: National University, Stone Conservation Laboratory.Google Scholar
  13. Fitzner, B. (2004). Documentation and evaluation of stone damage on monuments. In O. Kwiatkowski & R. Lofvendahl (Eds.), Proceedings of the 10th International Congress on Deterioration and Conservation of Stone (pp. 677-690). Stockholm.Google Scholar
  14. Fitzner, B., & Heinrichs, K. (2004). Photo atlas of weathering forms on stone monuments. www.stone.rwth-aachen.de. Internet homepage der Arbeitsgruppe, Natursteine und Verwitterung des Geologischen Instituts der RWTH Aachen. Accessed 20 June 2012.
  15. Fitzner, B., Heinrichs, K., & La Bouchardiere, D. (2002a). Damage index for stone monuments. In E. Galan & F. Zezza (Eds.), Protection and conservation of the cultural heritage of the Mediterranean cities (pp. 315–326). Sevilla: Swets & Zeitlinger. Proceeding of the 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin, 5-8 April 2000.Google Scholar
  16. Fitzner, B., Heinrichs, K., & La Bouchardiere, D. (2002b). Limestone weathering of historical monuments in Cairo, Egypt. In S. Siegesmund, T. Weiss, & A. Vollbrecht (Eds.), Natural stone weathering phenomena, conservation strategies and case studies (pp. 217–239). London: Geological Society. Special Publication 205.Google Scholar
  17. Fitzner, B., Heinrichs, K., & La Bouchardiere, D. (2003). Weathering damage on Pharaonic sandstone monuments in Luxor—Egypt. Building stone decay: Observations, experiments and modeling. Building and Environment, 38, 1089–1103.CrossRefGoogle Scholar
  18. Griffin, P. S., Indictor, N., & Kloestler, R. J. (1991). The biodeterioration of stone: A review of deterioration mechanisms, conservation case histories and treatment. International Biodeterioration, 28, 187–207.CrossRefGoogle Scholar
  19. Hafi, Z. B. (1998). Hydrochemical evaluation of the coastal Quaternary aquifer east of Tripoli, Libya. Journal of African Earth Sciences, 26, 643–648.CrossRefGoogle Scholar
  20. Hoque, M. (1975). An analysis of cross-stratification of Gargaresh calcarenite (Tripoli, Libya) and Pleistocene paleowinds. Geological Magazine, 112, 393–401.CrossRefGoogle Scholar
  21. Ilich, M., & Smykatz-Kloss, W. S. (1980). A contribution to the study of the Gargaresh calcarenite, NW Libya. In M. J. Salem & M. T. Busrewil (Eds.), The geology of Libya. Second Symposium on the Geology of Libya (vol. 3, pp. 1013-1015). Tripoli, September 16-21, 1978.Google Scholar
  22. Kenrick, P. (2009). Libyan archaeological guides: Tripolitania. London: Silphium Books.Google Scholar
  23. Liritzis, I., & Zacharias, N. (2010). Portable XRF of archaeological artifacts: Current research, potentials and limitations. In M. S. Shackley (Ed.), X-ray fluorescence spectrometry (XRF) in geoarchaeology (pp. 109–142). New York: Springer.Google Scholar
  24. Lisci, M., Monte, M., & Pacini, E. (2003). Lichens and higher plants on stone: A review. International Biodeterioration & Biodegradation, 51, 1–17.CrossRefGoogle Scholar
  25. Macedo, M. F., Miller, A. Z., Dionisio, A., & Saiz-Jimenez, C. (2009). Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology, 155, 3476–3490.CrossRefGoogle Scholar
  26. Mahmoud, H. M., Kantiranis, N., & Stratis, J. (2010). Salt damage on the wall paintings of the festival temple of Thutmosis III, Karnak Temple complex. Upper Egypt. A case study. International Journal of Conservative Science, 1, 133–142.Google Scholar
  27. Matthews, K. D., & Cook, A. W. (1975). Cites in the sand: Leptis Magna and Sabratha in Roman Africa. Philadelphia: University of Pennsylvania Press.Google Scholar
  28. Ordonez, S., Fort, R., & Garcia del Cura, M. A. (1997). Pore size distribution and the durability of a porous limestone. Quarterly Journal of Engineering Geology, 30, 221–230.CrossRefGoogle Scholar
  29. Ortega-Calvo, J. J., Arino, X., Hernandez-Marine, M., & Saiz-Jemenez, C. (1995). Factors affected the weathering and colonization of monuments by phototrophic microorganisms. The Science of Total Environment, 167, 329–341.CrossRefGoogle Scholar
  30. Rothert, E., Eggers, T., Cassar, J., Ruedrich, J., Fitzner, B., & Siegesmund, S. (2007). Stone properties and weathering induced by salt crystallization of Maltese Globigerina limestone. In R. Prikryl & B. J. Smith (Eds.), Building stone decay: From diagnosis to conservation (pp. 189–198). London: Geological Society, Special Publication.Google Scholar
  31. Saiz-Jimenez, C. (1999). Biogeochemistry of weathering processes in monuments. Geomicrobiology Journal, 16, 27–37.CrossRefGoogle Scholar
  32. Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration & Biodegradation, 46, 343–368.CrossRefGoogle Scholar
  33. Zaouia, N., Elwartite, M., & Baghdad, B. (2005). Superficial alteration and soluble salts in the calcarenite weathering, case study of Almohade monuments in Rabat, Morocco. Environmental Geology, 48, 742–747.CrossRefGoogle Scholar
  34. Zezza, F. (1993). The E. C. Project: Marine spray and polluted atmosphere as factor of damage to monuments in the Mediterranean coastal environment, objectives and results. European Cultural Heritage Newsletter Research, 7(1–4), 49–52.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Geology, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Earth and Environmental Sciences Department, Faculty of ScienceAl-Mergib UniversityAl-KhumsLibya

Personalised recommendations