African Archaeological Review

, Volume 30, Issue 1, pp 21–37 | Cite as

Ancient DNA for the Archaeologist: The Future of African Research

  • Michael G. Campana
  • Mim A. Bower
  • Pam J. Crabtree
Review Article


Ancient DNA analyses are increasingly popular in archaeology. With the exception of Egypt, the African continent has been grossly understudied using these techniques. We review the state of ancient DNA research on Africa, ancient DNA analysis techniques, and common pitfalls in these studies. We provide recommendations for archaeologists interested in collecting and interpreting ancient DNA data.


Ancient DNA Archaeology Africa Egypt 


Les analyses archéologiques de l’ADN ancien sont de plus en plus populaires. À l’exception de l’Égypte, l’Afrique est trés peu étudiée avec ces techniques. Nous résumons les techniques pour analyser l’ADN ancien, les problèmes de ces études et l’état de la recherche paléogénétique de l’Afrique. Nous offrons des recommendations pour obtenir et interpréter les données de l’ADN ancien.


  1. Anderung, C., Bouwman, A., Persson, P., Carretero, J. M., Ortega, A. I., Elburg, R., et al. (2005). Prehistoric contacts across the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proceedings of the National Academy of Sciences of the United States of America, 102, 8431–8435.CrossRefGoogle Scholar
  2. Ascunce, M. S., Kitchen, A., Schmidt, P. R., Miyamoto, M. M., & Mulligan, C. J. (2007). An unusual pattern of ancient mitochondrial DNA haplogroups in northern African cattle. Zoological Studies, 46(1), 123–125.Google Scholar
  3. Asher, R. J., & Hofreiter, M. (2006). Tenrec phylogeny and the non-invasive extraction of nuclear DNA. Systematic Biology, 55, 181–194.CrossRefGoogle Scholar
  4. Bailey, J. F., Richards, M. B., Macaulay, V. A., Colson, I. B., James, I. T., Bradley, D. G., et al. (1996). Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proceedings of the Royal Society of London B: Biological Sciences, 263, 1467–1473.CrossRefGoogle Scholar
  5. Barnes, I., Shapiro, B., Lister, A., Kuznetsova, T., Sher, A., Guthrie, D., et al. (2007). Genetic structure and extinction of the woolly mammoth Mammuthus primigenius. Current Biology, 17, 1072–1075.CrossRefGoogle Scholar
  6. Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218), 53–59.Google Scholar
  7. Bollongino, R., & Vigne, J.-D. (2008). Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. Journal of Archaeological Science, 35, 873–881.CrossRefGoogle Scholar
  8. Bower, M. A., McGivney, B. A., Campana, M. G., Gu, J., Andersson, L. S., Barrett, E., et al. (2012). The genetic origins and history of speed in the thoroughbred racehorse. Nature Communications, 3. doi: 10.1038/ncomms1644.
  9. Bower, M. A., Spencer, M., Matsumura, S., Nisbet, R. E. R., & Howe, C. J. (2005). How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence? Nucleic Acids Research, 33(8), 2549–2556.CrossRefGoogle Scholar
  10. Bradley, D. G., MacHugh, D. E., Cunningham, P., & Loftus, R. T. (1996). Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences of the United States of America, 93, 5131–5135.CrossRefGoogle Scholar
  11. Bronk Ramsey, C., Buck, C. E., Manning, S. W., Reimer, P., & van der Plicht, H. (2006). Developments in radiocarbon calibration for archaeology. Antiquity, 80, 783–798.Google Scholar
  12. Brown, T., & Brown, K. (2011). Biomolecular archaeology: An introduction. Chichester: Wiley-Blackwell.Google Scholar
  13. Campana, M. G. (2008). The use of ancient microsatellites to detect past migrations. Archaeological Review from Cambridge, 23, 147–160.Google Scholar
  14. Campana, M. G., Bower, M. A., Bailey, M. J., Stock, F., O’Connell, T. C., Edwards, C. J., et al. (2010). A flock of sheep, goats and cattle: Ancient DNA analysis reveals complexities of historical parchment manufacture. Journal of Archaeological Science, 37, 1317–1325.CrossRefGoogle Scholar
  15. Cooper, A., & Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289(5482), 1139.CrossRefGoogle Scholar
  16. Crubézy, É., Ludes, B., Poveda, J.-D., Clayton, J., Crouau-Roy, B., & Montagnon, D. (1998). Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5 400 years old. Comptes Rendus de lAcadémie des Sciences, Série 3, Sciences de la Vie, 321, 941–951.Google Scholar
  17. d’Abbadie, M., Hofreiter, M., Vaisman, A., Loakes, D., Gasparutto, D., Cadet, J., et al. (2007). Molecular breeding of polymerases for amplification of ancient DNA. Nature Biotechnology, 25, 939–943.Google Scholar
  18. Deakin, W., Rowley-Conwy, P., & Shaw, C. (1998a). Amplification and sequencing of DNA from preserved sorghum of up to 2800 years antiquity found at Qasr Ibrim. Ancient Biomolecules, 2(1), 27–41.Google Scholar
  19. Deakin, W., Rowley-Conwy, P., & Shaw, C. (1998b). The sorghum of Qasr Ibrim: Reconstructing DNA templates from ancient seeds. Ancient Biomolecules, 2(2/3), 117–124.Google Scholar
  20. Drancourt, M., & Raoult, D. (2005). Palaeomicrobiology: Current issues and perspectives. Nature, 3, 23–35.Google Scholar
  21. Edwards, C. J., Bollongino, R., Scheu, A., Chamberlian, A., Tresset, A., Vigne, J.-D., et al. (2007). Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society B: Biological Sciences, 274(1616), 1377–1385.CrossRefGoogle Scholar
  22. Edwards, C. J., MacHugh, D. E., Dobney, K. M., Martin, L., Russell, N., Horwitz, L. K., et al. (2004). Ancient DNA analysis of 101 cattle remains: Limits and prospects. Journal of Archaeological Science, 31, 695–710.CrossRefGoogle Scholar
  23. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138.CrossRefGoogle Scholar
  24. Endicott, P., Metspalu, M., Stringer, C., Macaulay, V., Cooper, A., & Sanchez, J. J. (2006). Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations. PLoS One, 1, e81.CrossRefGoogle Scholar
  25. Fernández, E., Ortiz, J. E., Pérez-Pérez, A., Prats, E., Turbón, D., Torres, T., et al. (2009). Aspartic acid racemization variability in ancient human remains: Implications in the prediction of ancient DNA recovery. Journal of Archaeological Science, 36, 965–972.CrossRefGoogle Scholar
  26. Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M., & Barnes, I. (2005a). Assessing ancient DNA studies. Trends in Ecology & Evolution, 20(10), 541–544.CrossRefGoogle Scholar
  27. Gilbert, M. T. P., Barnes, I., Collins, M. J., Smith, C., Eklund, J., Goudsmit, J., et al. (2005b). Long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich (2003). American Journal of Physical Anthropology, 128, 110–114.CrossRefGoogle Scholar
  28. Green, R. E., Briggs, A. W., Krause, J., Prüfer, K., Burbano, H. A., Siebauer, M., et al. (2009). The Neandertal genome and ancient DNA authenticity. The EMBO Journal, 28, 2494–2502.CrossRefGoogle Scholar
  29. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.CrossRefGoogle Scholar
  30. Green, R. E., Krause, J., Ptak, S. E., Briggs, A. W., Ronan, M. T., Simons, J. F., et al. (2006). Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–336.CrossRefGoogle Scholar
  31. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Science, 296, 336–339.CrossRefGoogle Scholar
  32. Hawass, Z., Gad, Y. Z., Ismail, S., Khairat, R., Fathalla, D., Hasan, N., et al. (2010). Ancestry and pathology in King Tutankhamun’s family. Journal of the American Medical Association, 303(7), 638–647.CrossRefGoogle Scholar
  33. Hawass, Z., Ismail, S., Selim, A., Saleem, S. N., Fathalia, D., Wasef, S., et al. (2012). Revisiting the harem conspiracy and death of Ramesses III: Anthropological, forensic, radiological, and genetic study. British Medical Journal, 345, e8268.Google Scholar
  34. Haynes, S., Searle, J. B., Bretman, A., & Dobney, K. M. (2002). Bone preservation and ancient DNA: The application of screening methods for predicting DNA survival. Journal of Archaeological Science, 29, 585–592.CrossRefGoogle Scholar
  35. Jombart, T., Pontier, D., & Dufour, A.-B. (2009). Genetic markers in the playground of multivariate analysis. Heredity, 102, 330–341.CrossRefGoogle Scholar
  36. Kemp, B. M., Malhi, R. S., McDonough, J., Bolnick, D. A., Eshleman, J. A., Rickards, O., et al. (2007). Genetic analysis of early Holocene skeletal remains from Alaska and its implications for the settlement of the Americas. American Journal of Physical Anthropology, 132, 605–621.CrossRefGoogle Scholar
  37. Kemp, B. M., Reséndez, A., Román Berrelleza, J. A., Malhi, R. S., & Smith, D. G. (2005). An analysis of ancient Aztec mtDNA from Tlatelolco: Pre-Columbia relations and the spread of Uto-Aztecan. In D. M. Reed (Ed.), Biomolecular archaeology: Genetic approaches to the past (pp. 22–46). Center for Archaeological Investigations, Occasional Paper No. 32. Carbondale: Southern Illinois University.Google Scholar
  38. Kimura, B., Marshall, F. B., Chen, S., Rosenbom, S., Moehlman, P. D., Tuross, N., et al. (2011). Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proceedings of the Royal Society B: Biological Sciences, 278, 50–57.CrossRefGoogle Scholar
  39. Kimura, B., Marshall, F., Beja-Pereira, A., & Mulligan, C. (2013). Donkey domestication. African Archaeological Review 30, 1.Google Scholar
  40. Kircher, M., & Kelso, J. (2010). High-throughput DNA sequencing – Concepts and limitations. BioEssays, 32, 524–536.Google Scholar
  41. Krause, J., Briggs, A. W., Kircher, M., Maricic, T., Zwyns, N., Derevianko, A., et al. (2010). A complete mtDNA genome of an Early Modern Human from Kostenki, Russia. Current Biology, 20, 231–235.CrossRefGoogle Scholar
  42. Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464, 894–897.CrossRefGoogle Scholar
  43. Krings, M, Salem, A.-e. H., Bauer, K., Geisert, H., Malek, A. K., Chaix, L., et al. (1999). mtDNA analysis of Nile River Valley populations: A genetic corridor or a barrier to migration? American Journal of Human Genetics, 64, 1166–1176.Google Scholar
  44. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90, 19–30.CrossRefGoogle Scholar
  45. Lachance, J., Vernot, B., Elbers, C. C., Ferwerda, B., Froment, A., Bodo, J.-M., et al. (2012). Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell. doi: 10.1016/j.cell.2012.07.009.
  46. Lalueza Fox, C. (1997). mtDNA analysis in ancient Nubians supports the existence of gene flow between sub-Sahara and North Africa in the Nile valley. Annals of Human Biology, 24(3), 217–227.CrossRefGoogle Scholar
  47. Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15276–15281.CrossRefGoogle Scholar
  48. Larson, G., Cucchi, T., Fujita, M., Matisoo-Smith, E., Robins, J., Anderson, A., et al. (2007). Phylogeny and ancient DNA of Sus provides insigiths into Neolithc expansion in island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 4834–4839.Google Scholar
  49. Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709–715.CrossRefGoogle Scholar
  50. Lippold, S., Knapp, M., Kuznetsova, T., Leonard, J. A., Benecke, N., Ludwig, A., et al. (2011). Discovery of lost diversity of paternal horse lineages using ancient DNA. Nature Communications, 2. doi: 10.1038/ncomms1447.
  51. Loreille, O., Vigne, J.-D., Hardy, C., Callou, C., Treinen-Claustre, F., Dennebouy, N., et al. (1997). First distinction of sheep and goat archaeological bones by the means of their fossil mtDNA. Journal of Archaeological Science, 24, 33–37.CrossRefGoogle Scholar
  52. Lorenzen, E. D., & Willerslev, E. (2010). King Tutankhamun’s family and demise. Journal of the American Medical Society, 303(24), 2471.Google Scholar
  53. Ludwig, A., Pruvost, M., Reissmann, M., Benecke, N., Brockmann, G. A., Castaños, P., et al. (2009). Coat color variation at the beginning of horse domestication. Science, 324, 485.CrossRefGoogle Scholar
  54. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376–380.Google Scholar
  55. McGahern, A., Bower, M. A. M., Edwards, C. J., Brophy, P. O., Sulimova, G., Zakharov, I., et al. (2006). Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations. Animal Genetics, 37, 494–497.CrossRefGoogle Scholar
  56. Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimon, F., Mallick, S., et al. (2012). A high-coverage genome sequence of an archaic Denisovan individual. Science. doi: 10.1126/science.1224344.
  57. Montagnon, D., Ravaoarimanana, B., Rakotosamimanana, B., & Rumpler, Y. (2001). Ancient DNA from Megaladapis edwardsi (Malagasy subfossil): Preliminary results using partial cytochrome b sequence. Folia Primatologica, 72, 30–32.CrossRefGoogle Scholar
  58. Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350.CrossRefGoogle Scholar
  59. Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U., & Hagedorn, H. G. (1997). Molecular evidence for tuberculosis in an ancient Egyptian mummy. The Lancet, 350, 1404.CrossRefGoogle Scholar
  60. O’Donoghue, K., Brown, T. A., Carter, J. F., & Evershed, R. P. (1994). Detection of nucleotide bases in ancient seeds from using gas chromatography/mass spectrometry and gas chromatography/mass spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry, 8, 503–508.CrossRefGoogle Scholar
  61. O’Donoghue, K., Clapham, A., Evershed, R. P., & Brown, T. A. (1996). Remarkable preservation of biomolecules in ancient radish seeds. Proceedings of the Royal Society of London B: Biological Sciences, 263, 541–547.CrossRefGoogle Scholar
  62. Oliveira, H. R., Civán, P., Morales, J., Rodríguez-Rodríguez, A., Lister, D. L., & Jones, M. K. (2012). Ancient DNA in archaeological wheat grains: Preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). Journal of Archaeological Science, 39(4), 828–835.CrossRefGoogle Scholar
  63. Olmi, L., Mercuri, A. M., Gilbert, M. T. P., Biagetti, S., Fordyce, S., Cappellini, E., et al. (2011). Morphological and genetic analyses of early-mid Holocene wild cereals from the Takarkori rockshelter (central Sahara, Libya): First results and prospects. In A. G. Fahmy, S. Kahlheber & A. C. D'Andrea (Eds.) Windows on the African past: Current approaches to African archaeobotany. Reports in African Archaeology 3. Proceedings of the 6th International Workshop on African Archaeobotany held 13–15 June 2009, at Helwan University, Cairo Egypt. Frankfurt am Main, Germany: Africa Magna Verlag.Google Scholar
  64. Orlando, L., Ginolhac, A., Raghavan, M., Vilstrup, J., Rasmussen, M., Magnussen, K., et al. (2011). True single-molecule DNA sequencing of a Pleistocene horse bone. Genome Research. doi: 10.1101/gr.122747.111.
  65. Pääbo, S. (1985). Molecular cloning of Ancient Egyptian mummy DNA. Nature, 314, 644–645.CrossRefGoogle Scholar
  66. Pääbo, S., Higuchi, R. G., & Wilson, A. C. (1989). Ancient DNA and the polymerase chain reaction. The Journal of Biological Chemistry, 264(17), 9709–9712.Google Scholar
  67. Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., et al. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645–679.CrossRefGoogle Scholar
  68. Palmer, S. A., Moore, J. D., Clapham, A. J., Rose, P., & Allaby, R. G. (2009). Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation. PLoS One, 4(7), e6301.CrossRefGoogle Scholar
  69. Plug, I., & Badenhorst, S. (2006). Notes on the fauna from three Late Iron Age mega-sites, Boitsemagano, Molokwane and Mabjanamathswana, North West Province, South Africa. The South African Archaeological Bulletin, 61(183), 57–67.Google Scholar
  70. Pruvost, M., Schwarz, R., Bessa Correia, V., Champlot, S., Braguier, S., Morel, N., et al. (2007). Freshly excavated fossil bones are best for amplification of ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 739–744.CrossRefGoogle Scholar
  71. Pushkarev, D., Neff, N. F., & Quake, S. R. (2009). Single-molecule sequencing of an individual human genome. Nature Biotechnology, 27, 847–850.CrossRefGoogle Scholar
  72. Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A., et al. (2011). An aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334(6052), 94–98.Google Scholar
  73. Rasmussen, M., Li, Y., Lindgreen, S., Pedersen, J. S., Albrectsen, A., Moltke, I., et al. (2010). Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–762.CrossRefGoogle Scholar
  74. Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Duran, E. Y., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060.CrossRefGoogle Scholar
  75. Ricaut, F.-X., Keyser-Tracqui, C., Cammaert, L., Crubézy, E., & Ludes, B. (2003). Genetic analysis and ethnic affinities from two Scytho-Siberian skeletons. American Journal of Physical Anthropology, 123, 351–360.CrossRefGoogle Scholar
  76. Robinson, T. J., Bastos, A. D., Halanych, K. M., & Herzig, B. (1996). Mitochondrial DNA sequence relationships of the extinct blue antelope Hippotragus leucophaeus. Naturwissenschaften, 83, 178–182.Google Scholar
  77. Rohland, N., Siedel, H., & Hofreiter, M. (2004). Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques, 36, 814–821.Google Scholar
  78. Ruggiero, L. F., Hayward, G. D., & Squires, J. R. (1994). Viability analysis in biological evaluations: Concepts of population viability analysis, biological population, and ecological scale. Conservation Biology, 8(2), 364–372.CrossRefGoogle Scholar
  79. Saiki, R. K., Scharf, S., Faloona, Mullis, K. B., Horn, G. T., et al. (1985). Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350–1354.Google Scholar
  80. Schuenemann, V. J., Bos, K., DeWitte, S., Schmedes, S., Jamieson, J., Mittnik, A., et al. (2011). Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.1105107108.
  81. Smith, C. I., Chamberlain, A. T., Riley, M. S., Stringer, C., & Collins, M. J. (2003). The thermal history of human fossils and the likelihood of successful DNA amplification. Journal of Human Evolution, 45, 203–217.CrossRefGoogle Scholar
  82. Stock, F., & Gifford-Gonzalez, D. (2013). Genetics and African Cattle Domestication. African Archaeological Review 30, 1.Google Scholar
  83. Stone, A. C., & Stoneking, M. (1998). mtDNA analysis of a prehistoric Oneota population: Implications for the peopling of the New World. American Journal of Human Genetics, 62, 1153–1170.Google Scholar
  84. Stone, A. C., & Stoneking, M. (1999). Analysis of ancient DNA from a prehistoric Amerindian cemetery. Philosophical Transactions of the Royal Society of London B, 354, 153–159.CrossRefGoogle Scholar
  85. Svensson, E. M., Götherström, A., & Vretemark, M. (2008). A DNA test for sex identification in cattle confirms osteometric results. Journal of Archaeological Science, 35, 942–946.CrossRefGoogle Scholar
  86. Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., et al. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39, 31–40.CrossRefGoogle Scholar
  87. Troy, C. S., MacHugh, D. E., Bailey, J. F., Magee, D. A., Loftus, R. T., Cunningham, P., et al. (2001). Genetic evidence for Near-Eastern origins of European cattle. Nature, 410, 1088–1091.CrossRefGoogle Scholar
  88. Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15, 1419–1439.CrossRefGoogle Scholar
  89. Willerslev, E., & Cooper, A. (2005). Ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 272, 3–16.CrossRefGoogle Scholar
  90. Woodward, S. R., Weyand, N. J., & Bunnell, M. (1994). DNA sequence from Cretaceous period bone fragments. Science, 266, 1229–1232.CrossRefGoogle Scholar
  91. Yoder, A. D., Rakotosamimanana, B., & Parsons, T. J. (1999). Ancient DNA in subfossil lemurs: Methodological challenges and their solutions. In B. Rakotosamimanan, H. Rasamimanana, J. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 1–32). New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  92. Zink, A. R., Grabner, W., Reischl, U., Wolf, H., & Nerlich, A. G. (2003). Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiology and Infection, 130, 239–249.CrossRefGoogle Scholar
  93. Zink, A., Haas, C. J., Reischl, U., Szeimies, U., & Nerlich, A. G. (2001). Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. Journal of Medical Microbiology, 50, 355–366.Google Scholar
  94. Zink, A. R., Sola, C., Reischl, U., Grabner, W., Rastogi, N., Wolf, H., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41(1), 359–367.CrossRefGoogle Scholar
  95. Zink, A. R., Sola, C., Reischl, U., Grabner, W., Rastogi, N., Wolf, H., et al. (2004). Molecular identification and characterization of Mycobacterium tuberculosis complex in ancient Egyptian mummies. International Journal of Osteoarchaeology, 14, 404–413.CrossRefGoogle Scholar
  96. Zischler, H., Höss, M., Handt, O., von Haeseler, A., van der Kuyl, A. C., Goudsmit, J., et al. (1995). Detecting dinosaur DNA. Science, 268, 1192–1195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael G. Campana
    • 1
  • Mim A. Bower
    • 2
  • Pam J. Crabtree
    • 3
  1. 1.Department of Human Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.McDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
  3. 3.Center for the Study of Human OriginsNew York UniversityNew YorkUSA

Personalised recommendations