African Archaeological Review

, Volume 30, Issue 1, pp 83–95 | Cite as

Donkey Domestication

  • Birgitta KimuraEmail author
  • Fiona Marshall
  • Albano Beja-Pereira
  • Connie Mulligan
Review Article


Donkeys are one of the least studied large domestic animals, even though they are economically important in many regions of the world. They are predominantly used as transport animals. Consequently, they are not kept in large numbers and this limits the number of archaeological specimens available for study. The donkey’s closest relative is the African wild ass, and genetic studies and zooarchaeological analyses of early donkeys indicate domestication of two genetically separate groups of wild asses in Africa. Maternal relationships revealed by mitochondrial DNA show that one group of donkeys was derived from the Nubian wild ass and that one was derived from an unknown ancestor distinct from the Somali wild ass.


Donkey domestication Ancient DNA Somali wild ass Nubian wild ass 


Les ânes sont l’un des animaux domestiques grands moins étudiés bien qu’ils soient très importants économiquement dans plusieurs regions du monde. Les ânes sont usés principalement comme des animaux du transport. Par conséquence ils ne sont pas maintenus en grand nombre et donc il y a une limitation des nombres des specimens qu’on peut étudier de manière archéologique. Le parent le plus proche est l’âne sauvage d’Afrique. Des études génétiques et zooarchéologiques indiquent la domestication des deux groupes génétiquement distincts des ânes sauvages d’Afrique. Les relations maternelles indiqués par l’ADN mitochondrial démontrent qu’un groupe dérivent des ânes de Nubie et que l’autre groupe dérivent des ânes inconnus qui sont différents de l’âne sauvage de Somalie.



We are grateful to Diane Gifford-Gonzalez for asking us to participate in this special issue of African Archaeological Review and to Olivier Hanotte for his enthusiasm regarding the potential of donkey genetics, as well as his 2002 introduction of Marshall and Beja-Pereira. This synthesis is based on primary research conducted and published with many colleagues. We are indebted to P. Moehlman, H. Yohannes, F. Kebede, and R. Teclai for their work on Somali wild ass and collaboration on genetic research. We have also benefitted greatly from the participation and expertise of N. Tuross, S. Chen, and S. Rosenbom in laboratory research. We are deeply grateful to the following individuals and institutions for providing archaeological or historic specimens for aDNA analysis: R. Sabin, L. Chaix, M. Harman, P. Kiura, L. Khalidi, C.P. Jenkins, P.R. Kraft, C. Lewis, R. Meadow, W. van Neer, W.A. Viccari, W. Wendelen, and The Bavarian State Collection for Zoology, Munich; Civic Natural History Museum, Verona; Institute of Human Palaeontology, Rome; Kenya National Museums, Nairobi; Natural History Museum, Geneva; Natural History Museum, London; National Museum Sana’a; Powell-Cotton Museum, Kent; Royal Museum of Central Africa, Tervuren; University of Rome; Peabody Museum, Harvard University. Current syntheses rest on the basis provided by an earlier generation who cared about wild ass and donkeys including: J. Clutton-Brock, C. Grigson, C. Groves, and H.-P. Uerpmann. We have also benefited from conversations with Equid colleagues working in different directions: R. Blench, E.-M. Geigl, S. Olsen, G. Thierry, E. Vila, and J. Weber, and from the insightful comments of the anonymous reviewers. Laboratory studies were funded by National Science Foundation grant BCS-0447369 (FM) and FCT grants (PTDC/BIA/BDE/64111/2006) (ABP).


  1. Aranguren-Méndez, J., Gomez, M., & Jordana, J. (2002). Hierarchical analysis of genetic structure in Spanish donkey breeds using microsatellite markers. Heredity, 89, 207–211.CrossRefGoogle Scholar
  2. Aranguren-Méndez, J., Jordana, J., & Gomez, M. (2001). Genetic diversity in Spanish donkey breeds using microsatellite DNA markers. Genetics Selection Evolution, 33, 433–442.CrossRefGoogle Scholar
  3. Baker, S. W. (1867). The Nile tributaries of Abyssinia and the sword hunters of the Hamran Arabs. London: Macmillan and Co.Google Scholar
  4. Beja-Pereira, A., England, P. R., Ferrand, N., Jordan, S., Bakhiet, A. O., Abdalla, M. A., et al. (2004). African origins of the domestic donkey. Science, 304, 1781.CrossRefGoogle Scholar
  5. Blench, R. M. (2000). A history of donkeys, wild asses and mules in Africa. In R. M. Blench & K. C. MacDonald (Eds.), The origins and development of African livestock: Archaeology, genetics, linguistics and ethnography (pp. 339–354). London: UCL.Google Scholar
  6. Boesneck, J., & von den Driesch, A. (1990). Tierreste aus der vorgeschichtlichen Siedlung von El-Omari bei Heluan/UnterÄgypten. In F. Debono & B. Mortensen (Eds.), El Omari (pp. 99–107). Mainz: von Zabern.Google Scholar
  7. Boesneck, J., von den Driesch, A., & Ziegler, R. (1989). Die Tierreste von Maadi und Wadi Digla. In I. Rizkana & J. Seeber (Eds.), Maadi III (pp. 87–128). Mainz: von Zabern.Google Scholar
  8. Bökönyi, S. (1985). The animal remains of Maadi, Egypt: A preliminary report. In M. Liverani, A. Palmieri, & R. Peroni (Eds.), Studi di paletnologia in onore do Salvatore M. Puglisi (pp. 495–499). Rome: Università di Roma 'La Sapienza'.Google Scholar
  9. Cattani, M., & Bökönyi, S. (2002). Ash-Shumah: An early Holocene settlement of desert hunters and mangrove foragers in the Yemeni Tihamah'. In S. Cleuziou, M. Tosi, & J. Zarins (Eds.), Essays of the late prehistory of the Arabian Peninsula (pp. 31–53). Rome: Istituto Italiano per l'Africa e l'Oriente.Google Scholar
  10. Champlot, S., Gautier, M., Arbuckle, B., Balasecu, A., Davis, S., Eisenmann V., et al. (2010). Phylogeography of the small equids. ICAZ 2010 Conference.Google Scholar
  11. Chen, S. Y., Zhou, F., Xiao, H., Sha, T., Wu, S. F., & Zhang, Y. P. (2006). Mitochondrial DNA diversity and population structure of four Chinese donkey breeds. Animal Genetics, 37, 427–429.CrossRefGoogle Scholar
  12. Chen, J., Sun, Y., Manglai, D., Min, L., & Pan, Q. (2010). Maternal genetic diversity and population structure of four Chinese donkey breeds. Livestock Science, 131, 272–280.CrossRefGoogle Scholar
  13. Dahl, G., & Hjort, A. (1976). Having herds. Pastoral herd growth and household economy (Vol. no. 2, Stockholm Studies in Social Anthropology). Stockholm: Department of Anthropology, University of Stockholm.Google Scholar
  14. Di Bernardo, G., Galderisi, U., Del Gaudio, S., D'Aniello, A., Lanave, C., De Robertis, M. T., et al. (2004). Genetic characterization of Pompeii and Herculaneum Equidae buried by Vesuvius in 79 AD. Journal of Cellular Physiology, 199, 200–205.CrossRefGoogle Scholar
  15. Epstein, H., & Mason, I. L. (1971). The origin of the domestic animals of Africa. New York: Africana Publishing CorporationGoogle Scholar
  16. Freeman, A. R., Hoggart, C. J., Hanotte, O., & Bradley, D. G. (2006). Assessing the relative ages of admixture in the bovine hybrid zones of Africa and the Near East using X chromosome haplotype mosaicism. Genetics, 173, 1503–1510.CrossRefGoogle Scholar
  17. Groves, C. P. (1986). The taxonomy, distribution, and adaptation of recent equids. In R. H. Meadow & H.-P. Uerpmann (Eds.), Equids in the ancient world (pp. 11–65). Wiesbaden: Ludwig Reichert Verlag.Google Scholar
  18. Gurney, S. M. R. (2010). Revisiting ancient mtDNA equid sequences from Pompeii. Journal of Cellular Biochemistry, 111, 1080–1081.CrossRefGoogle Scholar
  19. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. (2002). African pastoralism: Genetic imprints of origins and migrations. Science, 296, 336–339.CrossRefGoogle Scholar
  20. Ivankovic, A., Kavar, T., Caput, P., Mioc, B., Pavic, V., & Dovc, P. (2002). Genetic diversity of three donkey populations in the Croatian coastal region. Animal Genetics, 33, 169–177.CrossRefGoogle Scholar
  21. Kimura, B., Marshall, F. B., Chen, S., Rosenbom, S., Moehlman, P. D., Tuross, N., et al. (2011). Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proceedings Biological sciences / The Royal Society, 278, 50–57.CrossRefGoogle Scholar
  22. Klingel, H. (1998). Observations on social organization and behaviour of African and Asiatic wild asses (Equus africanus and Equus hemionus). Applied Animal Behaviour Science, 60, 103–113.CrossRefGoogle Scholar
  23. Kugler, W., Grunenfelder, H.-P., & Broxham, E. (2008). Donkey breeds in Europe. St. Gallen: Monitoring Institute.Google Scholar
  24. Ling, Y., Ma, Y., Guan, W., Cheng, Y., Wang, Y., Han, J., et al. (2010). Identification of Y chromosome genetic variations in Chinese indigenous horse breeds. Journal of Heredity, 101(5), 639–643.CrossRefGoogle Scholar
  25. Lhote, H. (1959). The search for the Tassili frescoes. New York: Dutton.Google Scholar
  26. Lhote, H. (1984). Les gravures rupestres de l'Atlas saharien: Monts des Ouled-Naïl et region de Djelfa. Alger: Office du Parc National du Tassili.Google Scholar
  27. Loftus, R. T., MacHugh, D. E., Ngere, L. O., Balain, D. S., Badi, A. M., Bradley, D. G., & Cunningham, E. P. (1994). Mitochondrial genetic variation in European, African and Indian cattle populations. Animal Genetics, 25, 265–271.CrossRefGoogle Scholar
  28. MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P., & Bradley, D. G. (1997). Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 146, 1071–1086.Google Scholar
  29. Maloiy, G. M. (1970). Water economy of the Somali donkey. American Journal of Physiology, 219, 1522–1527.Google Scholar
  30. Maloiy, G. M., & Boarer, C. D. (1971). Response of the Somali donkey to dehydration: Hematological changes. American Journal of Physiology, 221, 37–41.Google Scholar
  31. Marshall, F. (2000). Origins and spread of domestic animals in East Africa. In R. M. Blench & K. C. MacDonald (Eds.), The origins and development of African livestock: Archaeology, genetics, linguistics and ethnography (pp. 191–221). London: UCL.Google Scholar
  32. Marshall, F. (2007). African pastoral perspectives on domestication of the donkey. In T. Denham, J. Iriarte, & L. Vrydaghs (Eds.), Rethinking agriculture; Archaeological and ethnoarchaeological perspectives (pp. 371–407). Walnut Creek: Left Coast Press.Google Scholar
  33. Marshall, F., & Hildebrand, E. (2002). Cattle before crops: The beginnings of food production in Africa. Journal of World Prehistory, 16, 99–143.CrossRefGoogle Scholar
  34. Marshall, F., & Weissbrod, L. (2009). The consequences of women's use of donkeys for pastoral flexibility: Maasai ethnoarchaeology. In G. Grupe, G. McGlynn, & J. Peters (Eds.), Tracking down the past. Ethnohistory meets archaeozoology (pp. 59–79). Rahden/Westfalen: Marie Leidorf GmbH.Google Scholar
  35. Marshall, F., Weissbrod, L. & Pilgram, T. (2010). Domestication, selection and African wild ass: Joker in the pack. Poster Session on Archaeozoology and Palaeogenetics: Potentials and Limits, 11th International Conference of Archaeozoology, Paris, France, 23–28 August.Google Scholar
  36. Marshall, F., & Weissbrod, L. (2011). Domestication processes and morphological change: Through the lens of the donkey and African pastoralism. Current Anthropology, 52(S4), S397–S413.CrossRefGoogle Scholar
  37. Moehlman, P. D., Yohannes, H., Teclai, R., & Kebede, F. Equus africanus. IUCN 2011, IUCN Red List of Threatened Species, Version 2011.1.; Accessed October 2 2011.
  38. Moehlman, P. D. R., IUCN/SSC Equid Specialist Group, & International Union for Conservation of Nature and Natural Resources. (2002). Equids—Zebras, asses, and horses status survey and conservation action plan. Gland: IUCN—The World Conservation Union.Google Scholar
  39. Mohammed, A. (1991). Management and breeding aspects of donkeys around Awassa, Ethiopia. In D. Fielding, & R. A. Pearson (Eds.), Donkeys, mules and horses in tropical agricultural development (pp. 185-188). Edinburgh: University of Edinburgh.Google Scholar
  40. Murray, G. W. (1935). Sons of Ishmael: A study of the Egyptian Bedouin. London: Routledge & Sons, Ltd.Google Scholar
  41. Muzzolini, A. (2000). Livestock in Saharan rock art. In R. M. Blench & K. C. MacDonald (Eds.), The origins and development of African livestock: Archaeology, genetics, linguistics and ethnography (pp. 87–110). London: UCL.Google Scholar
  42. Nicolaisen, J. (1963). Ecology and culture of the pastoral Tuareg with particular reference to the Tuareg of Ahaggar and Ayr. Copenhagen: National Museum.Google Scholar
  43. Oakenfull, E. A., Lim, H. N., & Ryder, O. A. (2000). A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus. Conservation Genetics, 1, 341–355.CrossRefGoogle Scholar
  44. Orlando, L., Metcalf, J. L., Alberdi, M. T., Telles-Antunes, M., Bonjean, D., Otte, M., et al. (2009). Revising the recent evolutionary history of equids using ancient DNA. Proceedings of the National Academy of Sciences USA, 106, 21754–21759.CrossRefGoogle Scholar
  45. Pellecchia, M., Colli, L., Bigi, D., Zambonelli, P., Verini Supplizi, A., Liotta, L., et al. (2007). Mitochondrial DNA diversity of five Italian autochtonous donkey breeds. Italian Journal of Animal Science, 6(S1), 185.Google Scholar
  46. Pérez-Pardal, L., Royo, L. J., Beja-Pereira, A., Chen, S., Cantet, R. J., Traoré, A., et al. (2010). Multiple paternal origins of domestic cattle revealed by Y-specific interspersed multilocus microsatellites. Heredity, 105, 511–519.CrossRefGoogle Scholar
  47. Rossel, S., Marshall, F., Peters, J., Pilgram, T., Adams, M. D., & O'Connor, D. (2008). Domestication of the donkey: Timing, processes, and indicators. Proceedings of the National Academy of Sciences USA, 105, 3715–3720.CrossRefGoogle Scholar
  48. Uerpmann, H.-P. (1991). Equus africanus in Arabia. In R. H. Meadow & H.-P. Uerpmann (Eds.), Equids in the ancient world (pp. 12–33). Wiesbaden: Ludwig Reichert Verlag.Google Scholar
  49. Vilà, C., Leonard, J. A., & Beja-Pereira, A. (2006). Genetic documentation of horse and donkey domestication. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: New genetic and archaeological paradigms (pp. 342–353). Berkeley: University of California Press.Google Scholar
  50. Wallner, B., Piumi, F., Brem, G., Muller, M., & Achmann, R. (2004). Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus Equus. Journal of Heredity, 95, 158–164.CrossRefGoogle Scholar
  51. Wendorf, F., Schild, R., & Close, A. E. (1984). Cattle-keepers of the eastern Sahara: The Neolithic of Bir Kiseiba. Dallas: Department of Anthropology and Institute for the Study of Earth and Man, Southern Methodist University.Google Scholar
  52. Zhang, Y. S., Yang, X. Y., Wang, X. B., Zhang, C. M., Qin, F., Zhou, Z. H., et al. (2010). Cytochrome b genetic diversity and maternal origin of Chinese domestic donkey. Biochemical Genetics, 48, 636–646.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Birgitta Kimura
    • 1
    Email author
  • Fiona Marshall
    • 2
  • Albano Beja-Pereira
    • 3
  • Connie Mulligan
    • 4
  1. 1.Biotechnology Program, Perry Center for Emerging TechnologiesSanta Fe CollegeAlachuaUSA
  2. 2.Department of AnthropologyWashington UniversitySt. LouisUSA
  3. 3.Centro de Investigacao em Biodiversidade e Recursos Geneticos (CIBIO-UP)Universidade do Porto, Campus Agrario de VairaoPortoPortugal
  4. 4.Department of AnthropologyUniversity of FloridaGainesvilleUSA

Personalised recommendations