Skip to main content
Log in

The skewness risk premium in equilibrium and stock return predictability

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

In this study, we investigate the skewness risk premium in the financial market under a general equilibrium setting. Extending the long-run risks (LRR) model proposed by Bansal and Yaron (J Financ 59:1481–1509, 2004) by introducing a stochastic jump intensity for jumps in the LRR factor and the variance of consumption growth rate, we provide an explicit representation for the skewness risk premium, as well as the volatility risk premium, in equilibrium. On the basis of the representation for the skewness risk premium, we propose a possible reason for the empirical facts of time-varying and negative risk-neutral skewness. Moreover, we also provide an equity risk premium representation of a linear factor pricing model with the variance and skewness risk premiums. The empirical results imply that the skewness risk premium, as well as the variance risk premium, has superior predictive power for future aggregate stock market index returns, which are consistent with the theoretical implication derived by our model. Compared with the variance risk premium, the results show that the skewness risk premium plays an independent and essential role for predicting the market index returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Clifford S. Asness, Andrea Frazzini & Lasse Heje Pedersen

Notes

  1. The volatility (variance) risk premium is defined by the difference between two expected values of the volatility (variance) under the risk-neutral and physical probability measures, respectively.

  2. The long-run risks model, which is a stylized self-contained general equilibrium model incorporating the effects of time-varying economic uncertainty, is pioneered by Bansal and Yaron (2004).

  3. See Sects. 4.1 and 4.2 for the details of calculation methodology for option-implied skewness with the CBOE’s Skew Index.

  4. We can find that the correlation value between \(VIX_{t}^2\) and \(I{\textit{Skew}}_{t}\) in the same period is also nearly zero (see Table 2).

  5. Note that \( \kappa _1 = \frac{\exp (\bar{v})}{1 + \exp (\bar{v})}\) and this value is approximately 0.997 (cf) Bansal and Yaron (2004), which is also consistent with magnitudes used in Campbell and Shiller (1988).

  6. Because the datails of the four parameters, \(A_{x,m}\), \(A_{\sigma _m}\), \(A_{q,m}\), and \(A_{\lambda ,m}\), are insignificant and do not affect the discussion explored in the following at all. For simplicity, we express the parameters, \(A_{x,m}\), \(A_{\sigma _m}\), \(A_{q,m}\), and \(A_{\lambda ,m}\), as they are and do not show explicit representations of those parameters in this paper.

  7. The empirical evidence of the negative correlation between the one-step-ahead market return, \(r_{m,t+1}\), and the one-step-ahead change of risk-neutral skewness, \(\bigtriangleup {\textit{Skew}}_{t+1}^{\mathbb {Q}} \equiv {\textit{Skew}}_{t+1}^{\mathbb {Q}} - {\textit{Skew}}_{t}^{\mathbb {Q}}\), also essentially shown by Neuberger (2012). He shows that the period when the S&P500 index volatility was very low by historic standards (from the year of 2003 to 2007) was also one of relatively low skewness, whereas skewness was actually rather high in the volatility spike of the year of 2008. Under the leverage effect of Black (1976), that evidence suggests the same essentially as that of the negative correlation between the one-step-ahead market return and the one-step-ahead change of risk-neutral skewness.

  8. According to the description of the CBOE’s SKEW index, we have the proxy for the risk-neutral expected skewness, \(\mathbb {E}_t^{\mathbb {Q}} [{\textit{Skew}}_{t+1}^\mathbb {Q} (r_{m,t+2})]\), as \(\frac{1}{10} (100- {\textit{Skew}} \quad index)\).

  9. In our model setting, the time-t skewness of the one-step-ahead market return, \(r_{m,t+1}\), can be expressed by (21). Thus, we can find that the first-order autocorrelation of the skewness under the physical measure \(\mathbb {P}\) (or the risk-neutral measure \(\mathbb {Q}\)) is determined by that of the jump intensity \(\lambda _t\). From (6), we can also find that the first-order autocorrelation of the jump intensity \(\lambda _t\) is \(\rho _\lambda \). Previous studies such as those by Chan and Maheu (2002) and Christoffersen et al. (2012) also model the dynamics of the jump intensity of financial asset returns as a first-order autoregressive model in a similar fashion, and they find that the \(\rho _\lambda \) parameters in the jump intensity models, which are estimated with historical data of stock indices, are more than 0.9 and show the strong persistence in the conditional jump intensity. So, on the basis of these previous studies, we could assume that the objective expected future skewness, \(\mathbb {E}_t^{\mathbb {P}} [{\textit{Skew}}_{t+1}^{\mathbb {P}} (r_{m,t+2})] \), will be close to the value of the current empirical skewness so that the same qualitative implications hold true for the skewness difference obtained by replacing \(\mathbb {E}_t^{\mathbb {P}} [Skew_{t+1}^{\mathbb {P}} (r_{m,t+2})] \) in the definition (22) with the current empirical skewness.

  10. We thank a referee so much for suggesting the idea on this point.

  11. In this case, under the assumption of i.i.d distribution for daily returns, \({\textit{Skew}}_t^D\) is the historical 22 days actual skewness of daily return data, which is devided by \(\sqrt{22}\).

References

  • Aït-Sahalia, Y., Lo, A.: Nonparametric estimation of state-price-densities implicit in financial asset prices. J Financ 53, 499–547 (1998)

    Article  Google Scholar 

  • Aït-Sahalia, Y., Wang, W., Yared, F.: Do option markets correctly price the probabilities of movement of the underlying asset? J Econ 102, 67–110 (2001)

    Article  Google Scholar 

  • Bakshi, G., Kapadia, N., Madan, D.: Stock return characteristics, skew laws, and the differential pricing of individual equity options. Rev Financ Stud 16, 101–143 (2003)

    Article  Google Scholar 

  • Bali, T., Hovakimian, A.: Volatility spread and expected stock returns. Manage Sci 55, 1797–1812 (2009)

    Article  Google Scholar 

  • Bansal, R., Yaron, A.: Risks for the long run: a potential resolution of asset-pricing puzzles. J Financ 59, 1481–1509 (2004)

    Article  Google Scholar 

  • Black, F.: Studies of stock market volatility changes. In: Proceedings of the American Statistical Association, Business and Economic Statistics Section, pp. 177–181, (1976)

  • Bollerslev, T., Sizova, N., Tauchen, G.: Volatility in equilibrium: asymmetries and dynamic dependencies. Rev Financ 16, 31–80 (2012)

    Article  Google Scholar 

  • Bollerslev, T., Tauchen, G., Zhou, H.: Expected stock returns and variance risk premia. Rev Financ Stud 22, 4463–4492 (2009)

    Article  Google Scholar 

  • Campbell, J., Shiller, R.J.: The dividend-price ratio and expectations of future dividends and discount factors. Rev Financ Stud 1, 195–227 (1988)

    Article  Google Scholar 

  • Chan, W., Maheu, J.M.: Conditional jump dynamics in stock market returns. J Bus Econ Stat 20, 377–389 (2002)

    Article  Google Scholar 

  • Chang, B., Christoffersen, Y.P., Jacobs, K.: Market skewness risk and the cross section of stock returns. J Financ Econ 107, 46–68 (2013)

    Article  Google Scholar 

  • Christoffersen, P., Jacobs, K., Ornthanalai, C.: Dynamic jump intensities and risk premiums: evidence from S&P500 returns and options. J Financ Econ 106, 447–472 (2012)

    Article  Google Scholar 

  • Cont, R., Tankov, P.: Financial Modeling with Jump Processes. London: Chapman & Hall (2004)

  • Demeterfi, K., Derman, E., Kamal, M., Zou, J.: A guide to volatility and variance swaps. J Deriv 6, 9–32 (1999)

    Article  Google Scholar 

  • Drechsler, I., Yaron, A.: What’s vol got to do with it? Rev Financ Stud 24, 1–45 (2011)

    Article  Google Scholar 

  • Driessen, J., Lin, T., Lu, X.: Why do option prices predict stock returns? Working paper (2012)

  • Epstein, L., Zin, S.: Substitution, risk aversion and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937–969 (1989)

    Article  Google Scholar 

  • Eraker, B.: The volatility premium. Working paper, Department of Finance, University of Wisconsin (2008)

  • Lettau, M., Ludvigson, S.: Consumption, and expected stock returns. J Financ 56, 815–849 (2001)

    Article  Google Scholar 

  • Neuberger, A.: Realized skewness. Rev Financ Stud 26, 2174–2203 (2012)

    Google Scholar 

  • Rehman, Z., Vilkov, G.: Risk-neutral skewness: return predictability and its sources. Working paper (2012)

  • Yan, S.: Jump risk, stock returns, and slope of implied volatility smile. J Financ Econ 99, 216–233 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sasaki.

Additional information

For their helpful comments on this article, I especially wish to thank Hidetoshi Nakagawa, Kazuhiko Ohashi, Toshiki Honda, Nobuhiro Nakamura, Fumio Hayashi, Tatsuyoshi Okimoto, Ryozo Miura, and the participants at the Research Center for Mathematical Economics workshop in 2012 and the CSFI-CREST Seminar in 2013. I assume full responsibility for all errors.

Appendices

Appendix 1: Proof of Proposition 2

From (14),

$$\begin{aligned} \begin{aligned} \displaystyle \mathrm{Var}_{t+1}^\mathbb {P} (r_{m,t+2})&= B_r^t G_{t+1} G_{t+1}^t B_r + \sum _i B_r^2(i) \mathrm{Var}_{t+1}^\mathbb {P} (J_{i,t+2}) \\&= B_r^t G_{t+1} G_{t+1}^t B_r + {B_r^2}^t \Psi _{t+1}^{(2)} (0), \end{aligned} \end{aligned}$$
(28)

where

$$\begin{aligned} \begin{aligned} \displaystyle B_r&= \kappa _{1,m} A_m + e_d (\because (15)) \\&\equiv \begin{pmatrix} B_r(1)&B_r(2)&B_r(3)&B_r(4)&B_r(5)&B_r(6) \end{pmatrix} ^t \in \mathbb {R}^6, \\ B_r^2&\equiv \begin{pmatrix} B_r^2(1)&B_r^2(2)&B_r^2(3)&B_r^2(4)&B_r^2(5)&B_r^2(6) \end{pmatrix} ^t \in \mathbb {R}^6, \\ \Psi _{t+1}^{(2)} (0)&\equiv \begin{pmatrix} 0&\Psi _{t+1,x}^{(2)} (0)&\Psi _{t+1,\sigma ^2}^{(2)} (0)&0&0&0 \end{pmatrix} ^t \in \mathbb {R}^6, \nonumber \end{aligned} \end{aligned}$$

and \(\Psi _{t+1,x}^{(2)} (0)\) and \(\Psi _{t+1,\sigma ^2}^{(2)} (0)\) are respectively the second derivative of the cgf (cumulant-generating function) for \(J_{x,t+1}\) and \(J_{\sigma ^2, t+1}\) evaluated at 0, that is,

$$\begin{aligned} \begin{aligned} \displaystyle \Psi _{t+1,x}^{(2)} (0)&\equiv \frac{\partial ^2}{\partial u^2} \Psi _{t+1,x} (u) \mid _{u=0} = \frac{\partial ^2}{\partial u^2} \lambda _{x,t+1} (\psi _x (u) -1) \mid _{u=0}, \\ \Psi _{t+1,\sigma ^2}^{(2)} (0)&\equiv \frac{\partial ^2}{\partial u^2} \Psi _{t+1,\sigma ^2} (u) \mid _{u=0} = \frac{\partial ^2}{\partial u^2} \lambda _{\sigma ^2,t+1} (\psi _{\sigma ^2} (u) -1) \mid _{u=0}. \nonumber \end{aligned} \end{aligned}$$

Thus the expression of (28) is rearranged to the following representation,

$$\begin{aligned} \begin{aligned} \displaystyle \mathrm{Var}_{t+1}^\mathbb {P} (r_{m,t+2})&= B_r^t G_{t+1} G_{t+1}^t B_r + {B_r^2}^t \Psi _{t+1}^{(2)} (0) \\&= B_r^t (H_{\sigma ^2} \sigma _{t+1}^2 + H_q q_{t+1}) B_r + {B_r^2}^t \mathrm{diag} \Big ( \psi ^{(2)} (0) \Big ) \Pi _{t+1}, \nonumber \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \displaystyle H_{\sigma ^2}&\equiv \begin{pmatrix} \varphi _\eta ^2 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0\\ 0 &{} \varphi _e^2 &{} \quad 0 &{} \quad 0&{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \varphi _\zeta ^2 \end{pmatrix}, H_q \equiv \begin{pmatrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \varphi _\xi ^2 &{} \rho \varphi _\xi \varphi _u &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \rho \varphi _\xi \varphi _u &{} \varphi _u^2 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{pmatrix},\\ \mathrm{diag} \Big ( \psi ^{(2)} (0) \Big )&\equiv \begin{pmatrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \psi _x^{(2)} (0) &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \psi _{\sigma ^2}^{(2)} (0) &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{pmatrix}, \Pi _{t+1} \equiv \begin{pmatrix} 0 \\ \lambda _{x, t+1} \\ \lambda _{\sigma ^2, t+1} \\ 0 \\ 0 \\ 0 \end{pmatrix}. \nonumber \end{aligned} \end{aligned}$$

Appendix 2: Proof of Proposition 3

From the definition of the variance risk premium (18) and the expressions of the conditional variance of the market return \(r_{m,t+2}\) at time \(t+1\) under each of the probability measures, we can derive the following expression,

$$\begin{aligned} \displaystyle vp_t= & {} - B_r^t \Bigl [ \Lambda _{\sigma ^2} H_{\sigma ^2} + \varphi _\xi (\varphi _\xi \Lambda _q + \rho \varphi _u \Lambda _\lambda ) H_{q} \Bigr ] B_r q_t \nonumber \\&+ B_r^t H_{\sigma ^2} B_r \Bigl [ \mathbb {E}_t^\mathbb {Q} [J_{\sigma ^2,t+1}^\mathbb {Q}] - \mathbb {E}_t^\mathbb {P} [J_{\sigma ^2,t+1}^\mathbb {P}] \Bigr ] \nonumber \\&+ {B_r^2}^t \Bigl [ \mathrm {diag} (\psi ^{(2)} (-\Lambda ) ) \mathbb {E}_t^\mathbb {Q} [\Pi _{t+1}] - \mathrm {diag} (\psi ^{(2)} (0 ) ) \mathbb {E}_t^\mathbb {P} [\Pi _{t+1}] \Bigr ], \end{aligned}$$
(29)

where \(\Lambda _q \equiv (1-\theta ) \kappa _1 A_q\), \(\Lambda _\lambda \equiv (1-\theta ) \kappa _1 A_\lambda \) (see (13)), and

$$\begin{aligned} \begin{aligned} \displaystyle \mathrm{diag} \Big ( \psi ^{(2)} (-\Lambda ) \Big )&\equiv \begin{pmatrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \psi _x^{(2)} (- \Lambda _x) &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \psi _{\sigma ^2}^{(2)} (- \Lambda _{\sigma ^2}) &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{pmatrix}, \\ \mathbb {E}_t^\mathbb {Q} [\Pi _{t+1}]&\equiv \begin{pmatrix} 0&\mathbb {E}_t^\mathbb {Q} [\lambda _{x,t+1}]&\mathbb {E}_t^\mathbb {Q} [\lambda _{\sigma ^2, t+1}]&0&0&0 \end{pmatrix} ^t, \\ \mathbb {E}_t^\mathbb {P} [\Pi _{t+1}]&\equiv \begin{pmatrix} 0&\mathbb {E}_t^\mathbb {P} [\lambda _{x,t+1}]&\mathbb {E}_t^\mathbb {P} [\lambda _{\sigma ^2, t+1}]&0&0&0 \end{pmatrix} ^t, \nonumber \end{aligned} \end{aligned}$$

Substituting the following facts,

$$\begin{aligned} \begin{aligned} \displaystyle \mathbb {E}_t^\mathbb {Q} [J_{\sigma ^2,t+1}^\mathbb {Q}]&= \lambda _{\sigma ^2, t} \psi _{\sigma ^2}^{(1)} (- \Lambda _{\sigma ^2}), \\ \mathbb {E}_t^\mathbb {P} [J_{\sigma ^2,t+1}^\mathbb {P}]&= \lambda _{\sigma ^2, t} \psi _{\sigma ^2}^{(1)} (0), \nonumber \end{aligned} \end{aligned}$$

into (29) and considering (6) and (16), we can obtain the representation (20). \(\square \)

Appendix 3: The risk-free rate

The explicit expression of the risk-free rate can be obtained by substituting \(r_{f,t}\) into \(r_{j,t+1}\) in (3). We finally provide the following proposition on the risk-free rate \(r_{f,t}\).

Proposition 6

(The Risk-Free Rate) The risk free rate is expressed as follows with the state variables of \(\sigma _t^2\), \(q_t\), and \(\lambda _t\).

$$\begin{aligned} \displaystyle r_{f,t} = \beta _{rf,c} + \beta _{rf,x} x_t + \beta _{rf,\sigma } \sigma _t^2 + \beta _{rf,q} q_t + \beta _{rf,\lambda } \lambda _t, \\ \end{aligned}$$

where

$$\begin{aligned} \beta _{rf,c}\equiv & {} - \theta \log \delta + \gamma \mu _g - (\theta -1)(\kappa _0 - A_0)\\&- (\theta -1) \kappa _1 (A_0 + A_\sigma \mu _\sigma + A_q \mu _q + A_\lambda \mu _\lambda ), \\ \beta _{rf,x}\equiv & {} \gamma - (\theta -1) A_x (\kappa _1 \rho _x -1), \\ \beta _{rf,\sigma }\equiv & {} (1-\theta ) A_\sigma (\kappa _1 \rho _\sigma -1) - \frac{1}{2} \Bigl [ \gamma ^2 \varphi _\eta ^2 + (\theta -1)^2 \kappa _1^2 A_x^2 \varphi _e^2 \Bigr ], \\ \beta _{rf,q}\equiv & {} (1-\theta ) A_q (\kappa _1 \rho _q -1) - \frac{1}{2} (\theta -1)^2 \kappa _1^2\\&\Bigl [ A_\sigma ^2 + A_q^2 \varphi _\xi ^2 + 2 A_q A_\lambda \varphi _\xi \varphi _u \rho + A_\lambda ^2 \varphi _u^2\Bigr ], \\ \beta _{rf,\lambda }\equiv & {} (1-\theta ) A_\lambda (\kappa _1 \rho _\lambda -1) \\&- l_x \Bigl [ \exp \left( \frac{1}{2} (\theta -1)^2 \kappa _1^2 A_x^2 \right) - 1 \Bigr ] - l_\sigma \Bigl [ \exp \left( \frac{1}{2} (\theta -1)^2 \kappa _1^2 A_\sigma ^2 \right) - 1 \Bigr ]. \nonumber \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, H. The skewness risk premium in equilibrium and stock return predictability. Ann Finance 12, 95–133 (2016). https://doi.org/10.1007/s10436-016-0275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-016-0275-7

Keywords

JEL Classification

Navigation