Skip to main content

Advertisement

Log in

Functional Down-Regulation of β1 and β2 Integrins on Lamina Propria Lymphocytes (LPL) and Tumor-Infiltrating Lymphocytes (TIL) in Colorectal Cancer Patients

  • Editorial
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Integrins play an important role in various lymphocyte functions. In this study, we isolated lamina propria lymphocytes (LPL) and tumor-infiltrating lymphocytes (TIL) from normal and malignant tissues in patients with colorectal cancer, and examined the expression of β1 and β2 integrins on these lymphocytes quantitatively with two-color flow cytometry. Both LPL and TIL expressed a lower level of common β1 chain (CD29) in CD4 and CD8 subpopulations than did peripheral blood lymphocytes (PBL). Among the associated α chains, the expression levels of α1 (CD49a) and α2 (CD49b) were slightly higher, whereas those of α4 (CD49d) and α6 (CD49f) were markedly reduced in LPL and TIL. No significant differences were observed in expressions of any β1 integrin chains between these two lymphocytes populations. Similarly, both αL (CD11a) and β2 (CD18) were down-regulated in TIL and LPL with CD8+ cytotoxic phenotype, but not in those with CD4+ phenotype. CD8+ TIL expressed a slightly but significantly higher level of αLβ2 than did CD8+ LPL. CD8+ LPL and CD8+ TIL consistently showed significantly decreased binding to purified ICAM-1, VCAM-1 and HT29 colon cancer cells as compared with CD8+ PBL. Although CD8+ TIL showed a slightly higher level of adhesion to these substrates than did CD8+ LPL, the level was much lower than that in PBL. The expression pattern and functional down-regulation of these integrins may be one of the reasons why TIL cannot eradicate the cancer cells in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Cardi G, Mastrangelo MJ, Berd D. Depletion of T cells with CD4+CD45R+ phenotype in lymphocytes that infiltrate subcutaneous metastasis of human melanoma. Cancer Res 1989;49:6562–6565.

    PubMed  CAS  Google Scholar 

  2. Takagi S, Chen K, Schwarz R, Iwatsuki S, Herberman RB, Whiteside TL. Functional and phenotypic analysis of tumor-infiltrating lymphocytes isolated from human primary and metastatic liver tumors and cultured in recombinant interleukin-2. Cancer 1989;63:102–111.

    PubMed  CAS  Google Scholar 

  3. Balch CM, Riley LB, Bae IJ, Salmeron MA, Platsoucas CD, von Eschenbach A, Itoh K. Pattern of tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 1990;125:200–205.

    PubMed  CAS  Google Scholar 

  4. Yoo Y, Heo DS, Hata K, Thiel DH, Whiteside TL. Tumorinfiltrating lymphocytes from human colon carcinomas. Functional and phenotypic characteristics after long-term culture in recombinant interleukin-2. Gastroenterology 1990;98:259–268.

    PubMed  CAS  Google Scholar 

  5. Kowalczyk D, Skorupski W, Kwias Z, Nowak J. Flow cytometric analysis of tumour-infiltrating lymphocytes in patients with renal cell carcinoma. Br J Urol 1997;80:543–547.

    PubMed  CAS  Google Scholar 

  6. Ostenstad B, Lea T, Schlichting E, Harboe M. Human colorectal tumour infiltrating lymphocytes express activation markers and the CD45RO molecule, showing a primed population of lymphocytes in the tumour area. Gut 1994;35:382–387.

    PubMed  CAS  Google Scholar 

  7. Whitford P, George WD, Campbell AM. Flow cytometric analysis of tumour infiltrating lymphocyte activation and tumour cell MHC class I and II expression in breast cancer patients. Cancer Lett 1992;61:157–164.

    PubMed  CAS  Google Scholar 

  8. Hemler ME. VLA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu Rev Immunol 1990;8:365–400.

    PubMed  CAS  Google Scholar 

  9. Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  CAS  PubMed  Google Scholar 

  10. Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–433.

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu Y, Van Seventer GA, Horgan KJ, Shaw S. Roles of adhesion molecules in T-cell recognition: Fundamental similarities between four integrins on resting human T cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding, and costimulation. Immunol Rev 1990;114:109–143.

    PubMed  CAS  Google Scholar 

  12. Krensky AM, Robbins E, Springer TA, Burakoff SJ. LFA-1, LFA-2 and LFA-3 antigens are involved in CTL-target conjugation. J Immunol 1984;132:2180–2182.

    PubMed  CAS  Google Scholar 

  13. Pnadolfi F, Trentin L, Boyle BA, Stamenkovic I, Byers R, Colvin RB, Kurnick JT. Expression of cell adhesion molecules in human melanoma cell lines and their role in cytotoxicity mediated by tumor-infiltrating lymphocytes. Cancer 1992;69:1165–1173.

    Article  Google Scholar 

  14. Isobe M, Yagita H, Okumura K, Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992;255:1125–1127.

    CAS  PubMed  Google Scholar 

  15. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multi-step paradigm. Cell 1994;76:301–314.

    Article  CAS  PubMed  Google Scholar 

  16. Bull DM, Bookman MA. Isolation and functional characterization of human intestinal mononuclear cells. J Clin Invest 1977;59:966–974.

    PubMed  CAS  Google Scholar 

  17. Hansel TT, Pound JD, Pilling D, et al. Purification of human blood eosinophils by negative selection using immunomagnetic beads. J Immunol Methods 1989;122:97–103.

    PubMed  CAS  Google Scholar 

  18. Kitayama JC, Mackay R, Ponath PD, Springer TA. The C-C chemokine receptor CCR3 participates in stimulation of eosinophil arrest on inflammatory endothelium in shear flow. J Clin Invest 1997;101:2017–2024.

    Google Scholar 

  19. Moretta A, Ciccone E, Pantaleo G, Tambussi G, Bottino C, Melioli G, Moretta L. Surface molecules involved in the activation and regulation of T or natural killer lymphocytes in humans. Immunol Rev 1989;111:145–175.

    PubMed  CAS  Google Scholar 

  20. Hemler ME, Brenner MB, McLean JM, Strominger JL. Antigenic stimulation regulates the level of expression of interleukin 2 receptor on human T cells. Proc Natl Acad Sci USA 1984;81:2172–2175.

    PubMed  CAS  Google Scholar 

  21. Shimizu Y, Van Seventer GA, Horgan KJ, Shaw S. Regulated expression and function of three VLA (beta 1) integrin receptors on T cells. Nature 1990;345:250–253.

    PubMed  CAS  Google Scholar 

  22. Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD3, LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced gamma interferon production. J Immunol 1988;140:1401–1407.

    PubMed  CAS  Google Scholar 

  23. Trejdosiewicz LK. Intestinal intraepithelial lymphocytes and lymphoepithelial interactions in human gastrointestinal mucosa. Immunol Lett 1992;32:13–19.

    PubMed  CAS  Google Scholar 

  24. Boehinicke WH, Kellner I, Konter U, Sterry W. Differential expression of adhesion molecules on infiltrating cells in inflammatory dermatitis. Am J Acad Dermatol 1992;26:907–913.

    Article  Google Scholar 

  25. Paolieri F, Pesce GP, Torre GC, Canonica GW, Bagnasco M. Expression of very late antigen-1 on intrathyroid lymphocytes in autoimmune thyroid disease. J Endocrinol Invest 1992;15:63–66.

    PubMed  CAS  Google Scholar 

  26. Laffon A, Garcia-Vicuna R, Humbria A, Postigo AA, Corbi AL, De Landazuri MO, Sanchez-Madrid F. Upregulated expression and function of VLA-4 fibronectin receptors on human activated T cells in rheumatoid arthritis. J Clin Invest 1991;88:546–552.

    Article  PubMed  CAS  Google Scholar 

  27. Yokota A, Murata N, Saiki O, Shimizu M, Springer TA, Kishimoto T. High avidity state of leukocyte function-associated antigen-1 on rheumatoid synovial fluid T lymphocytes. J Immunol 1995;155:4118–4124.

    PubMed  CAS  Google Scholar 

  28. Makgoba MW, Sanders ME, Ginther Luce GE, Gugel EA, Dustin ML, Springer TA, Shaw S. Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1 in cytotoxic T cell recognition. Eur J Immunol 1988;18:637–640.

    PubMed  CAS  Google Scholar 

  29. Rodrigues M, Nussenzweig RS, Pomero P, Zavala F. The in vivo cytotoxic activity of CD8+ T cell clones correlate with their levels of expression of adhesion molecules. J Exp Med 1992;175:895–905.

    PubMed  CAS  Google Scholar 

  30. Rabinowich H, Cohen R, Bruderman I, Steiner Z, Klajman A. Functional analysis of mononuclear cells infiltrating into tumors: Lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 1987;47:173–177.

    PubMed  CAS  Google Scholar 

  31. Shimizu Y, Van Seventer GA, Horgan KJ, Shaw S. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol 1990;145:59–67.

    PubMed  CAS  Google Scholar 

  32. Vyth-Dreese FA, Dellemijn TA, Frijhoff A, van Kooyk Y, Figdor CG. Role of LFA-1/ICAM-1 in interleukin-2-stimulated lymphocyte proliferation. Eur J Immunol 1993;23:3292–3299.

    PubMed  CAS  Google Scholar 

  33. van Seventer G, Shimizu Y, Horgan K, Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 1990;144:4579–4586.

    PubMed  Google Scholar 

  34. Miescher S, Stoeck M, Qiao L, Barras C, Barrelet L, von Flieder V. Preferential clonogenic deficit of CD8-positive T lymphocytes infiltrating human solid tumors. Cancer Res 1988;48:6992–6998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitayama, J., Tuno, N., Nakayama, H. et al. Functional Down-Regulation of β1 and β2 Integrins on Lamina Propria Lymphocytes (LPL) and Tumor-Infiltrating Lymphocytes (TIL) in Colorectal Cancer Patients. Ann Surg Oncol 6, 500–506 (1999). https://doi.org/10.1007/s10434-999-0500-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10434-999-0500-y

Key Word

Navigation