Skip to main content
Log in

Chemical short-range-order induced multiscale strengthening in refractory medium entropy alloys

难熔中熵合金化学短程有序强化的多尺度模拟研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

High/medium entropy alloys (H/MEAs) are generally possible to exhibit chemical short-range order (SRO). However, the complex role of SRO on mechanical properties from nano-scale to meso-scale is still challenging so far. Here, we study the strengthening mechanism and deformation behavior in a model body-centered-cubic HfNbTa MEA by using atomic-scale molecular dynamics, micro-scale dislocation dynamics, and meso-scale crystal plasticity finite element. The SRO inhibits dislocation nucleation at the atomic scale, improving the flow stress. The SRO-induced ultrastrong local stress fluctuation greatly improves the micro-scale dislocation-based strength by the significant dislocation forest strengthening. Moreover, the Ta-rich locally ordered structure leads to an obvious heterogeneous strain and stress partitioning, which forms a strong strain gradient in the adjacent grain interiors and contributes to the strong back-stress-induced strain hardening.

摘要

中熵合金中广泛存在的化学短程有序对材料强韧性的影响研究是一个典型的跨尺度问题, 构建从纳米尺度结构细节到细观尺 度力学性能的跨尺度关联方法是阐明化学短程有序强韧化机理的关键. 我们发展了一套结合纳米尺度分子动力学、微米尺度离散位 错动力学和介观尺度晶体塑性有限元的分层多尺度模型框架. 基于该方法, 我们以体心立方HfNbTa体系为例, 系统研究了化学短程有 序对典型难熔中熵合金变形和强化行为的影响机理. 纳米尺度上, 化学短程有序结构抑制了位错形核, 从而提高了合金的流动应力; 细 观尺度上, 化学短程有序引起的超强局部应力波动诱发了额外的林位错强化, 显著提高了位错强化的贡献. 此外, 通过诱导富Ta局部有 序结构的形成, 合金中的原子级非均匀应变和应力能够进一步增强, 从而在相邻晶粒内部形成强应变梯度, 提升背应力诱导的应变 硬化.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie, and A. M. Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature 581, 283 (2020).

    Article  Google Scholar 

  2. X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou, P. Jiang, L. Zhou, Q. Xue, F. Yuan, J. Zhu, X. Wu, and E. Ma, Direct observation of chemical short-range order in a medium-entropy alloy, Nature 592, 712 (2021).

    Article  Google Scholar 

  3. W. R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, and I. J. Beyerlein, Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi, Acta Mater. 199, 352 (2020).

    Article  Google Scholar 

  4. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. G. Nieh, and Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563, 546 (2018).

    Article  Google Scholar 

  5. B. Zhang, J. Ding, and E. Ma, Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys, Appl. Phys. Lett. 119, 201908 (2021).

    Article  Google Scholar 

  6. S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu, D. J. Srolovitz, P. K. Liaw, and Y. W. Zhang, Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering, Nat. Commun. 12, 4953 (2021).

    Article  Google Scholar 

  7. D. Q. Zhao, S. P. Pan, Y. Zhang, P. K. Liaw, and J. W. Qiao, Structure prediction in high-entropy alloys with machine learning, Appl. Phys. Lett. 118, 231904 (2021).

    Article  Google Scholar 

  8. X. Liu, H. Zhao, H. Ding, D. Y. Lin, and F. Tian, Effect of short-range order on the mechanical behaviors of tensile and shear for NiCoFeCr, Appl. Phys. Lett. 119, 131904 (2021).

    Article  Google Scholar 

  9. S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu, D. J. Srolovitz, P. K. Liaw, and Y. W. Zhang, Short-range ordering alters the dislocation nucleation and propagation in refractory high-entropy alloys, Mater. Today 65, 14 (2023).

    Article  Google Scholar 

  10. S. Xu, W. R. Jian, Y. Su, and I. J. Beyerlein, Line-length-dependent dislocation glide in refractory multi-principal element alloys, Appl. Phys. Lett. 120, 061901 (2022).

    Article  Google Scholar 

  11. X. Yang, Y. Xi, C. He, H. Chen, X. Zhang, and S. T. Tu, Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation, Scripta Mater. 209, 114364 (2022).

    Article  Google Scholar 

  12. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  13. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  14. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu, Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential, Mater. Des. 202, 109560 (2021).

    Article  Google Scholar 

  15. Q. J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun. 10, 3563 (2019).

    Article  Google Scholar 

  16. V. Bulatov, and W. Cai, Computer Simulations of Dislocations (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  17. J. Li, Y. Chen, Q. He, X. Xu, H. Wang, C. Jiang, B. Liu, Q. Fang, Y. Liu, Y. Yang, P. K. Liaw, and C. T. Liu, Heterogeneous lattice strain strengthening in severely distorted crystalline solids, Proc. Natl. Acad. Sci. U.S.A. 119, e2200607119 (2022).

    Article  Google Scholar 

  18. A. Arsenlis, M. Rhee, G. Hommes, R. Cook, and J. Marian, A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron, Acta Mater. 60, 3748 (2012).

    Article  Google Scholar 

  19. G. Z. Voyiadjis, and F. H. Abed, Microstructural based models for BCC and FCC metals with temperature and strain rate dependency, Mech. Mater. 37, 355 (2005).

    Article  Google Scholar 

  20. Y. Cui, G. Po, and N. Ghoniem, Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals, Acta Mater. 108, 128 (2016).

    Article  Google Scholar 

  21. R. R. Eleti, N. Stepanov, N. Yurchenko, D. Klimenko, and S. Zherebtsov, Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys, Scripta Mater. 200, 113927 (2021).

    Article  Google Scholar 

  22. S. Chandra, M. K. Samal, V. M. Chavan, and S. Raghunathan, Hierarchical multiscale modeling of plasticity in copper: From single crystals to polycrystalline aggregates, Int. J. Plast. 101, 188 (2018).

    Article  Google Scholar 

  23. H. Fan, Q. Wang, J. A. El-Awady, D. Raabe, and M. Zaiser, Strain rate dependency of dislocation plasticity, Nat. Commun. 12, 1845 (2021).

    Article  Google Scholar 

  24. G. Po, Y. Cui, D. Rivera, D. Cereceda, T. D. Swinburne, J. Marian, and N. Ghoniem, A phenomenological dislocation mobility law for BCC metals, Acta Mater. 119, 123 (2016).

    Article  Google Scholar 

  25. Y. Cui, G. Po, P. Srivastava, K. Jiang, V. Gupta, and N. Ghoniem, The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals, Int. J. Plast. 124, 117 (2020).

    Article  Google Scholar 

  26. M. Yaghoobi, S. Ganesan, S. Sundar, A. Lakshmanan, S. Rudraraju, J. E. Allison, and V. Sundararaghavan, PRISMS-Plasticity: An open-source crystal plasticity finite element software, Comput. Mater. Sci. 169, 109078 (2019).

    Article  Google Scholar 

  27. M. A. Groeber, and M. A. Jackson, DREAM.3D: A digital representation environment for the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 3, 56 (2014).

    Article  Google Scholar 

  28. J. H. Kim, M. G. Lee, J. H. Kang, C. S. Oh, and F. Barlat, Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction, Int. J. Plast. 93, 26 (2017).

    Article  Google Scholar 

  29. Q. Li, H. Zhang, F. Chen, D. Xu, D. Sui, and Z. Cui, Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling, Int. J. Mech. Sci. 176, 105569 (2020).

    Article  Google Scholar 

  30. S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X. G. Li, J. Ding, S. P. Ong, M. Asta, and R. O. Ritchie, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order, Nat. Commun. 12, 4873 (2021).

    Article  Google Scholar 

  31. M. Ausloos, and D. H. Berman, A multivariate Weierstrass-Mandel-brot function, Proc. R. Soc. Lond. A 400, 331 (1985).

    Article  Google Scholar 

  32. H. Zhang, H. Fu, X. He, C. Wang, L. Jiang, L. Q. Chen, and J. Xie, Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater. 200, 803 (2020).

    Article  Google Scholar 

  33. Q. Fang, W. Lu, Y. Chen, H. Feng, P. K. Liaw, and J. Li, Hierarchical multiscale crystal plasticity framework for plasticity and strain hardening of multi-principal element alloys, J. Mech. Phys. Solids 169, 105067 (2022).

    Article  Google Scholar 

  34. S. Maiti, and W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater. 106, 87 (2016).

    Article  Google Scholar 

  35. B. B. He, B. Hu, H. W. Yen, G. J. Cheng, Z. K. Wang, H. W. Luo, and M. X. Huang, High dislocation density-induced large ductility in deformed and partitioned steels, Science 357, 1029 (2017).

    Article  Google Scholar 

  36. T. W. Zhang, S. G. Ma, D. Zhao, Y. C. Wu, Y. Zhang, Z. H. Wang, and J. W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling, Int. J. Plast. 124, 226 (2020).

    Article  Google Scholar 

  37. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574, 223 (2019).

    Article  Google Scholar 

  38. F. Wang, G. H. Balbus, S. Xu, Y. Su, J. Shin, P. F. Rottmann, K. E. Knipling, J. C. Stinville, L. H. Mills, O. N. Senkov, I. J. Beyerlein, T. M. Pollock, and D. S. Gianola, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science 370, 95 (2020).

    Article  Google Scholar 

  39. S. Yin, J. Ding, M. Asta, and R. O. Ritchie, Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys, Npj Comput. Mater. 6, 110 (2020).

    Article  Google Scholar 

  40. S. Tsianikas, Y. Chen, A. Slattery, J. Peters, and Z. Xie, Adaptive attenuation of hierarchical composition fluctuations augments the plastic strain of a high entropy steel, Mater. Sci. Eng.-A 857, 144037 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12372069, 12302083, and 12172123), China Postdoctoral Science Foundation (Grant Nos. 2023M731061 and BX20230109), the Natural Science Foundation of Hunan Province (Grant No. 2022JJ20001), and Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20220378). Peter K. Liaw very much appreciates the support from the National Science Foundation (Grant Nos. DMR-1611180, 1809640, and 2226508).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Weizheng Lu: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Visualization, Investigation, Writing – review & editing. Yang Chen: Methodology, Software, Data curation, Funding acquisition, Writing – original draft, Visualization, Investigation, Writing – review & editing. Jia Li: Methodology, Software, Funding acquisition, Data curation, Writing – original draft, Visualization, Investigation, Writing – review & editing, Supervision. Peter K. Liaw: Writing – review & editing, Project administration, Supervision, Funding acquisition. Qihong Fang: Conceptualization, Methodology, Validation, Writing – review & editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Yang Chen  (陈阳) or Jia Li  (李甲).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Chen, Y., Li, J. et al. Chemical short-range-order induced multiscale strengthening in refractory medium entropy alloys. Acta Mech. Sin. 40, 223569 (2024). https://doi.org/10.1007/s10409-024-23569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23569-x

Navigation