Skip to main content
Log in

The mechanical-thermal-electrical contact behaviors between rough surfaces under cyclic loading

循环载荷作用下粗糙界面的力-热-电接触行为

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The influence mechanism of cyclic loading on the stiffness, thermal resistance, and electrical resistance of rough contact surfaces is a key issue in evaluating the interface contact performance of engineering structures under complex loading conditions. How to characterize this random contact process and reveal the correlation mechanism of different physical quantities at the contact interface, and to predict the changes of interface contact stiffness, thermal resistance and electrical resistance with cyclic load is a very critical and challenging problem. In this paper, a probabilistic characterization method for the random contact process is proposed. Then, based on this method, theoretical models are established to describe the mechanical behavior, thermal and electrical contact resistance of the rough contact surface under cyclic loading. The results show that the cyclic load has a significant effect on the thermal and electrical contact resistance. The stiffness, thermal insulation capacity, and electrical conductivity of the interface are closely related to the number of cyclic loads, which provides a reference for the evaluation of interface performance and life prediction of engineering structures in complex environments.

摘要

循环载荷对粗糙界面接触刚度、热阻以及电阻的影响机制是评估复杂工程结构界面性能需解决的关键问题. 如何表征接触过 程随机性, 并揭示界面不同物理量耦合机制, 从而预测界面性能(接触刚度、热阻和电阻)演化规律是极具挑战的问题. 本文提出了一 种随机接触过程概率表征方法, 并基于此建立了界面力-热-电接触理论模型来描述循环载荷下粗糙界面接触行为, 揭示了循环载荷对 界面刚度、隔热能力和导电能力影响机制, 为复杂工程结构界面性能评估和寿命预测提供了理论参考

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Zhao, S. Zhang, X. Lu, and Q. Dong, Cyclic tangential loading of a power-law hardening elastic-plastic spherical contact in pre-sliding stage, Int. J. Mech. Sci. 128–129, 652 (2017).

    Article  Google Scholar 

  2. L. Gorbatikh, and M. Popova, Modeling of a locking mechanism between two rough surfaces under cyclic loading, Int. J. Mech. Sci. 48, 1014 (2006).

    Article  Google Scholar 

  3. J. H. Kim, and Y. H. Jang, Frictional contact behaviors between beam and cylinder under cyclic loading, Int. J. Mech. Sci. 131–132, 693 (2017).

    Article  Google Scholar 

  4. I. Etsion, Y. Kligerman, and Y. Kadin, Unloading of an elastic-plastic loaded spherical contact, Int. J. Solids Struct. 42, 3716 (2005).

    Article  Google Scholar 

  5. Y. Kadin, Y. Kligerman, and I. Etsion, Unloading an elastic-plastic contact of rough surfaces, J. Mech. Phys. Solids 54, 2652 (2006).

    Article  Google Scholar 

  6. M. Borri-Brunetto, A. Carpinteri, S. Invernizzi, and M. Paggi, Micro-slip of rough surfaces under cyclic tangential loading, in: Analysis and Simulation of Contact Problems (Springer, Berlin, Heidelberg, 2006), pp. 333–340.

    Chapter  Google Scholar 

  7. B. Zhao, S. Zhang, P. Wang, and Y. Hai, Loading-unloading normal stiffness model for power-law hardening surfaces considering actual surface topography, Tribol. Int. 90, 332 (2015).

    Article  Google Scholar 

  8. T. Jana, A. Mitra, and P. Sahoo, Unloading analysis of elastically and plastically graded hemispherical contact with rigid flat, Tribol. Int. 142, 105973 (2020).

    Article  Google Scholar 

  9. D. Bi, H. Chen, and T. Ye, Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures, Cryogenics 52, 403 (2012).

    Article  Google Scholar 

  10. M. Paggi, and J. R. Barber, Contact conductance of rough surfaces composed of modified RMD patches, Int. J. Heat Mass Transfer 54, 4664 (2011).

    Article  Google Scholar 

  11. A. J. Greenwood, Constriction resistance and the real area of contact, J. Appl. Phys. 17, 1621 (2002).

    Google Scholar 

  12. J. A. Greenwood, A unified theory of surface roughness, Proc. R. Soc. Lond. A 393, 133 (1984).

    Article  Google Scholar 

  13. J. A. Greenwood, and J. H. Tripp, The elastic contact of rough spheres, J. Appl. Mech. 34, 153 (1967).

    Article  Google Scholar 

  14. M. G. Cooper, B. B. Mikic, and M. M. Yovanovich, Thermal contact conductance, Int. J. Heat Mass Transfer 12, 279 (1969).

    Article  Google Scholar 

  15. B. B. Mikić, Thermal contact conductance; theoretical considerations, Int. J. Heat Mass Transfer 17, 205 (1974).

    Article  Google Scholar 

  16. M. R. Sridhar, and M. M. Yovanovich, Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments, J. Heat Transfer 118, 3 (1996).

    Article  Google Scholar 

  17. H. Ragnar, Electric Contacts (Springer, Berlin, Heidelberg, 1967).

    Google Scholar 

  18. J. A. Greenwood, and J. B. P. Williamson, Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300 (1966).

    Article  Google Scholar 

  19. D. Qiu, L. Peng, P. Yi, and X. Lai, A micro contact model for electrical contact resistance prediction between roughness surface and carbon fiber paper, Int. J. Mech. Sci. 124–125, 37 (2017).

    Article  Google Scholar 

  20. M. Chen, L. Xiao, H. Dong, J. Fan, and X. Zhang, Pressure-driven contact mechanics evolution of cathode interfaces in lithium batteries, Acta Mech. Solid Sin. 36, 65 (2023).

    Article  Google Scholar 

  21. W. R. Chang, I. Etsion, and D. B. Bogy, An elastic-plastic model for the contact of rough surfaces, J. Tribol. 109, 257 (1987).

    Article  Google Scholar 

  22. G. Krishnan, and A. Jain, Heat transfer in a multi-layered semiconductor device with spatially-varying thermal contact resistance between layers, Int. Commun. Heat Mass Transfer 140, 106482 (2023).

    Article  Google Scholar 

  23. W. Ta, S. Qiu, Y. Wang, J. Yuan, Y. Gao, and Y. Zhou, Volumetric contact theory to electrical contact between random rough surfaces, Tribol. Int. 160, 107007 (2021).

    Article  Google Scholar 

  24. H. Hertz, and J. Reine Angew, On the contact of elastic solids, Math 92, 156 (1882).

    Google Scholar 

  25. L. M. Tavares, and R. P. King, Modeling of particle fracture by repeated impacts using continuum damage mechanics, Powder Tech. 123, 138 (2002).

    Article  Google Scholar 

  26. B. D. Edmans, and I. C. Sinka, Unloading of elastoplastic spheres from large deformations, Powder Tech. 374, 618 (2020).

    Article  Google Scholar 

  27. W. Ta, H. Zhao, X. Zhang, Y. Gao, and Y. Zhou, Rough contact surface reconstruction based on A mechanical-thermal contact model, Tribol. Int. 177, 107977 (2023).

    Article  Google Scholar 

  28. L. Q. Shi, Numerical Simulation and Experimental Study of solid interface thermal contact resistance at High Temperature, Dissertation for Master’s Degree (2020).

  29. M. R. Brake, An analytical elastic-perfectly plastic contact model, Int. J. Solids Struct. 49, 3129 (2012).

    Article  Google Scholar 

  30. S. M. S. Wahid, and C. V. Madhusudana, Thermal contact conductance: effect of overloading and load cycling, Int. J. Heat Mass Transfer 46, 4139 (2003).

    Article  Google Scholar 

  31. L. T. Li, X. M. Liang, Y. Z. Xing, D. Yan, and G. F. Wang, Measurement of real contact area for rough metal surfaces and the distinction of contribution from elasticity and plasticity, J. Tribol. 143, 071501 (2021).

    Article  Google Scholar 

  32. P. Zhang, Research on the Heat Transfer Character of Electronic Equipment’s Contact Surfaces, Dissertation for Doctoral Degree (2013).

  33. Y. Yuan, Y. Cheng, K. Liu, and L. Gan, A revised Majumdar and Bushan model of elastoplastic contact between rough surfaces, Appl. Surf. Sci. 425, 1138 (2017).

    Article  Google Scholar 

  34. Z. Feng, J. Yan, and Y. Gao, Prediction of contact resistance between copper blocks under cyclic load based on deep learning algorithm, AIP Adv. 12, 075009 (2022).

    Article  Google Scholar 

  35. I. V. Kragelsky, M. N. Dobychin, and V. S. Kombalov, Friction and Wear: Calculation Methods (Elsevier, 2013).

Download references

Acknowledgements

The authors are grateful to Prof. Yuanwen Gao and Prof. Xingyi Zhang for their help and enlightening discussions in experiments as well as financial support from the Natural Science Foundation of China (Grant No. 12272157), the National Key R&D Program of China (Grant No. 2022YFC3003401), State Key Laboratory Project of Geohazard Prevention and Environment Protection (Grant No. SKLGP2023K023), the Young Scientific and Technological Talent Support Project of Gansu (Grant No. GXH20210611-03), the Lanzhou Science and Technology Support Project (Grant No. 2021-1-153), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2021-ct04), and the 111 Project (Grant No. B14044).

Author information

Authors and Affiliations

Authors

Contributions

Hang Zhao carried out the research and results analysis, helped organize the manuscript, and revised the final version. Wurui Ta was responsible for the conceptualization and supervision, offered methodology and funding acquisition, wrote the initial draft, revised and edited the final version. Youhe Zhou was responsible for the conceptualization and supervision, and offered funding acquisition.

Corresponding authors

Correspondence to Wurui Ta  (他吴睿) or Youhe Zhou  (周又和).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ta, W. & Zhou, Y. The mechanical-thermal-electrical contact behaviors between rough surfaces under cyclic loading. Acta Mech. Sin. 39, 123212 (2023). https://doi.org/10.1007/s10409-023-23212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23212-x

Navigation