Skip to main content
Log in

Prediction of aircraft surface noise during maneuvering flight

机动飞行下飞行器表面噪声预计

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Research is carried out on the prediction of aircraft surface noise during flight with high maneuverability and high overload. The dual hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) calculation model based on zonal mixing and turbulent scale mixing is modified, and the new hybrid model is established to simulate complex separated flow accurately. A calculation method for simultaneously calculating aerodynamic/motion, internal/external flow, and compressible/incompressible flow is employed. The dual hybrid RANS/LES model combined with six-degree-of-freedom motion equations is used to simulate the maneuvering process of the aircraft and calculate the surface acoustic load. The calculation results reveal that the acoustic load at the inlet of the engine and tail nozzle is large. During positive overload flight, the surface noise is greater than negative overload due to the stronger turbulent fluctuation on the aircraft surface and the impact of jet noise at the tail nozzle. The contribution rate of jet noise to the overall sound pressure level (OASPL) of the fuselage gradually increased from front to rear. In the maneuvering state, the vortex motion on the aircraft surface is enhanced, and the pressure fluctuation is stronger than that in the cruise state, which makes the surface acoustic load greater than that in the cruise state.

摘要

针对飞行器高机动大过载飞行时表面噪声预计问题开展研究. 对基于分区混合与湍流尺度混合的双重RANS/LES混合模型进 行修正, 对复杂分离流动进行精确模拟. 建立一种同时计算气动/运动、内/外流、可压缩/不可压缩流的计算方法, 利用双重RANS/LES 混合模型结合六自由度运动方程模拟飞行器机动过程并计算飞行器表面声载荷. 计算结果表明进气道及尾喷口处声载荷较大, 正过载 飞行时由于飞行速度较大、尾喷口喷流噪声影响使得表面噪声大于负过载. 喷流噪声对机身总声压级贡献率由前到后逐渐增大. 机动 状态下, 飞行器表面涡流运动增强, 压强脉动大于巡航状态, 使得相同飞行速度下机动状态表面总声压级大于巡航状态.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Standard, Environmental Test Methods and Engineering Guidelines, MILSTD-810E, AMSC F, 4766 (1989).

  2. X. Zhang, Aircraft noise and its nearfield propagation computations, Acta Mech. Sin. 28, 960 (2012).

    Article  MATH  ADS  Google Scholar 

  3. X. Ding, H. Liang, A. Jakobsson, X. Tu, and Y. Huang, High-resolution source localization exploiting the sparsity of the beamforming map, Signal Process. 192, 108377 (2022).

    Article  Google Scholar 

  4. W. Zining, L. Min, T. Xiaogang, G. Kefeng, H. Shuo, and C. Ming, Multi-objective robust secure beamforming for cognitive satellite and UAV networks, J. Syst. Eng. Electron. 32, 789 (2021).

    Article  Google Scholar 

  5. K. Hoshino, and T. Fujii, Codebook design for vertical beamforming by multi-cell coordination, IEICE Trans. Fundamentals E105.A, 622 (2022).

    Article  Google Scholar 

  6. K. M. Leete, A. T. Wall, K. L. Gee, T. B. Neilsen, M. M. James, and J. M. Downing, Acoustical holography-based analysis of spatiospectral lobes in high-performance aircraft jet noise, AIAA J. 59, 4166 (2021).

    Article  ADS  Google Scholar 

  7. Z. Xu, Z. Zhao, and E. Sowah, in Research on vehicle speed estimation method based on microphone array: Proceedings of International Conference on Smart Transportation and City Engineering 2021, Chongqing, 2021, pp. 126–131.

  8. T. F. Brooks, J. R. Jolly, and M. A. Marcolini, Helicopter main-rotor noise: Determination ofsource contributions using scaled model data (1988).

  9. J. R. Underbrink, Practical Considerations in Focused Array Design for Passive Broad-Band Source Mapping Applications, Dissertation for Master’s Degree (The Pennsylvania State University, State College, 1995).

  10. U. Michel, B. Barsikow, B. Haverich, M. Schuettpelz, U. Michel, B. Barsikow, B. Haverich, and M. Schuettpelz, in Investigation of airframe and jet noise in high-speed flight with a microphone array: Proceedings of 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, 1997.

  11. T. Padois, P. A. Gauthier, and A. Berry, Inverse problem with beamforming regularization matrix applied to sound source localization in closed wind-tunnel using microphone array, J. Sound Vib. 333, 6858 (2014).

    Article  ADS  Google Scholar 

  12. S. Timmermans, M. Vanierschot, and D. Vandepitte, Aerodynamic model updating using wind-tunnel setup for hummingbirdlike flapping wing nanorobot, AIAA J. 60, 902 (2022).

    Article  ADS  Google Scholar 

  13. E. Grande, G. Romani, D. Ragni, F. Avallone, and D. Casalino, Aeroacoustic investigation of a propeller operating at low Reynolds numbers, AIAA J. 60, 860 (2022).

    Article  ADS  Google Scholar 

  14. S. Iwagami, R. Tabata, T. Kobayashi, Y. Hattori, and K. Takahashi, Numerical study on edge tone with compressible direct numerical simulation: Sound intensity and jet motion, Int. J. Aeroacoust. 20, 283 (2021).

    Article  Google Scholar 

  15. W. Liu, J. Wook Kim, X. Zhang, D. Angland, and B. Caruelle, Landing-gear noise prediction using high-order finite difference schemes, J. Sound Vib. 332, 3517 (2013).

    Article  ADS  Google Scholar 

  16. T. Yang, X. Chen, Q. Zhao, and G. Zhao, Numerical study on the noise propagation characteristics of rotor in non-uniform downwash flowfield based on linearized Euler equations, Int. J. Aeroacoust. 21, 731 (2022).

    Article  Google Scholar 

  17. C. K. W. Tam, Computational Aeroacoustics: A Wave Number Approach (Cambridge University Press, New York, 2012).

    Book  MATH  Google Scholar 

  18. C. K. W. Tam, and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107, 262 (1993).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. C. Zhang, X. Sun, T. Du, C. Shen, Z. Chen, D. Liang, J. Zhao, and Y. Zhang, Reduction of noise generated by cylinder-airfoil interaction using grooved structures on the upstream cylinder, Int. J. Aeroacoust. 21, 708 (2022).

    Article  Google Scholar 

  20. G. Desquesnes, M. Terracol, and P. Sagaut, Numerical investigation of the tone noise mechanism over laminar airfoils, J. Fluid Mech. 591, 155 (2007).

    Article  MATH  ADS  Google Scholar 

  21. Z. K. Ma, Numerical Investigation of Slat Noise Attentuation Using Acoustic Liners (University of Southampton, Southampton, 2008).

    Google Scholar 

  22. C. K. W. Tam, Computational aeroacoustics-Issues and methods, AIAA J. 33, 1788 (1995).

    Article  MATH  ADS  Google Scholar 

  23. S. Herff, K. Pausch, M. Meinke, and W. Schröder, Numerical investigation ofturbulent combustion noise using a hybrid LES/CAA approach, NIC Symposium 2018, JARA-HPC (2018).

  24. J. Lighthill, Early development of an “acoustic analogy” approach to aeroacoustic theory, AIAA J. 20, 449 (1982).

    Article  MATH  ADS  Google Scholar 

  25. N. Curle, The influence of solid boundaries upon aerodynamic sound, Proc. Royal Soc. London Ser. A Math. Phys. Sci. 231, 505 (1955).

    MathSciNet  MATH  ADS  Google Scholar 

  26. Y. Dai, Y. An, Z. Li, and Q. Zhang, Numerical simulation of noise generated by shock (wave) and boundary layer interaction in aeroengine inlet, Acta Mech. Sin. 38, 321482 (2022).

    Article  Google Scholar 

  27. M. S. Howe, Theory of Vortex Sound (Cambridge University Press, New York, 2003).

    MATH  Google Scholar 

  28. A. S. Lyrintzis, The use of Kirchhoff’s method in computational aeroacoustics, J. Fluids Eng. 116, 665 (1994).

    Article  Google Scholar 

  29. H. D. Yao, L. Davidson, L. E. Eriksson, S. H. Peng, O. Grundestam, and P. E. Eliasson, Surface integral analogy approaches for predicting noise from 3D high-lift low-noise wings, Acta Mech. Sin. 30, 326 (2014).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. R. D. Sandberg, and N. D. Sandham, Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation, J. Fluid Mech. 596, 353 (2008).

    Article  MATH  ADS  Google Scholar 

  31. L. Ran, C. Ye, Z. Wan, H. Yang, and D. Sun, Instability waves and low-frequency noise radiation in the subsonic chevron jet, Acta Mech. Sin. 34, 421 (2018).

    Article  ADS  Google Scholar 

  32. Y. Mu, J. Li, W. Lei, and D. Liao, The effect of doors and cavity on the aerodynamic noise of fuselage nose landing gear, Int. J. Aeroacoust. 20, 345 (2021).

    Article  Google Scholar 

  33. Y. Yao, Z. Sun, G. Li, G. Yang, P. Prapamonthon, Y. Guo, and M. Wang, Aerodynamic optimization using passive control devices near the bogie cabin of high-speed trains, Acta Mech. Sin. 38, 321363 (2022).

    Article  MathSciNet  Google Scholar 

  34. D. P. Lockard, Airframe noise predictions using the Ffowcs WilliamsHawkings equation, Int. J. Aeroacoust. 21, 476 (2022).

    Article  Google Scholar 

  35. P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theoret. Comput. Fluid Dyn. 20, 181 (2006).

    Article  MATH  ADS  Google Scholar 

  36. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Flow 29, 1638 (2008).

    Article  Google Scholar 

  37. S. Kawai, and K. Fujii, Compact scheme with filtering for large-eddy simulation of transitional boundary layer, AIAA J. 46, 690 (2008).

    Article  ADS  Google Scholar 

  38. F. Auger, and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Trans. Signal Process. 43, 1068 (1995).

    Article  ADS  Google Scholar 

  39. Y. Yamamoto, Y. Wada, and M. Yoshioka, in Hypersonic CFD analysis for the aerothermodynamic design of HOPE: Proceedings of 13th Applied Aerodynamics Conference, San Diego, 1995.

  40. M. J. Henshaw, M219 cavity case, British aerospace operations ltd brough (United Kingdom) military aircraft and aerostructures, (2000).

  41. J. Bridges, and C. Brown, in Validation of the small hot jet acoustic rig for aeroacoustic research: Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, 2005.

  42. Y. Du, C. W. Kuo, P. J. Morris, and D. K. McLaughlin, Simulations and measurements of the flow and noise in hot supersonic jets, Noise Cont. Eng. J. 60, 577 (2012).

    Article  Google Scholar 

Download references

Acknowledgements This work was supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX2022002), the National Natural Science Foundation of China (Grant No. 11872312), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JM-233).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Bin Li designed the research. Xiaoguang Zhang wrote the first draft of the manuscript. Xiaoguang Zhang designed the methodology and computer programs. Xiaoguang Zhang organized the manuscript. Bin Li revised and edited the final version.

Corresponding author

Correspondence to Bin Li  (李斌).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, B. Prediction of aircraft surface noise during maneuvering flight. Acta Mech. Sin. 40, 323186 (2024). https://doi.org/10.1007/s10409-023-23186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23186-x

Navigation