Skip to main content
Log in

Sequential conservative integer programming method for multi-constrained discrete variable structure topology optimization

求解多约束离散变量结构拓扑优化的序列保守近似整数规划算法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The sequential approximate integer programming (SAIP) method successfully solves multiple types of large-scale topology optimization problems by solving a sequence of separable approximate integer programming subproblems. However, these subproblems must be with quadratic/linear objective function with linear constraints that can be analytically solved by the canonical relaxation algorithm (CRA). Besides, SAIP relies on the decreasing volume fraction strategy so that it owns difficulties to confront topology optimization problems without active volume constraints. The success of MMA (method of moving asymptotic) inspires us to introduce the classical sequential conservative approximate programming that can generate a sequence of steadily improving feasible designs and present a sequential conservative integer programming (SCIP) method for the development of SAIP. This new method generates a sequence of nonlinear approximate integer programming subproblems containing the reciprocal variables, whose conservation is controlled by moving asymptotes. Since CRA is invalid for nonlinear subproblems, a simple design variable update rule derived by the KKT (Karush-Kuhn-Tucker) conditions is given. Based on the above idea, SCIP obtains stable optimization processes without relying on linear constraints, such as the volume constraint, and thus complex discrete variable topology optimization problems can be efficiently solved. Various requirements of topology optimization problems are handled, including equality or inequality constraints, and inactive or active volume constraints. Numerical results show that since the conservative property has been inherited, the convergence of the optimization process can be regulated without additional structural analysis.

摘要

序列近似整数规划方法通过求解一系列可分离的近似整数规划子问题成功求解多类大规模拓扑优化问题. 然而, 这些近似子问 题的解析求解依靠正则松弛算法, 正则松弛算法要求子问题必须由二次或线性的目标函数以及线性的约束函数构成. 同时, 序列近似 整数规划方法依赖于体分比下降策略, 这使得其难以处理不包含体分比约束的拓扑优化问题. 为进一步地完善序列近似整数规划算法,我们受移动渐近线方法的启发, 引入经典的序列保守近似规划, 以获得一系列可行性稳步提升的设计, 这个新方法称作序列保守近似整数规划算法. 新方法会产生一系列包含倒数设计变量的非线性的近似整数规划子问题, 并通过调整渐近线控制子问题的保守性. 由于正则松弛算法不能求解非线性子问题, 一种基于KKT (Karush-Kuhn-Tucker)条件的简单的设计变量更新准则被给出. 基于上述思想, 序列保守近似整数规划算法不依靠体分比约束等线性约束就可以获得稳定的优化过程, 由此可以用来求解复杂的离散变量拓扑优化 问题. 多类不同需求的拓扑优化问题被解决, 包括考虑等式约束及非等式约束的、以及考虑有效的及无效的体分比约束的问题. 数值 结果证明, 由于保守性的引入, 整个优化收敛进程可以自适应地调节无需额外的结构分析.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. P. Bendsøe, and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193 (1989).

    Article  Google Scholar 

  3. M. Zhou, and G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng. 89, 309 (1991).

    Article  Google Scholar 

  4. G. Allaire, F. Jouve, and A. M. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique 334, 1125 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Allaire, F. Jouve, and A. M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194, 363 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. M. Xie, and G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885 (1993).

    Article  Google Scholar 

  8. X. Guo, W. Zhang, and W. Zhong, Doing topology optimization explicitly and geometrically—A new moving morphable components based framework, J. Appl. Mech. 81, 081009 (2014).

    Article  Google Scholar 

  9. L. Li, C. Liu, Z. Du, W. Zhang, and X. Guo, A meshless moving morphable component-based method for structural topology optimization without weak material, Acta Mech. Sin. 38, 421445 (2022).

    Article  MathSciNet  Google Scholar 

  10. L. A. Schmit Jr., and B. Farshi, Some approximation concepts for structural synthesis, AIAA J. 12, 692 (1974).

    Article  Google Scholar 

  11. L. X. Qian, W. X. Zhong, K. T. Cheng, and Y. K. Sui, An approach to structural optimization—sequential quadratic programming, SQP, Eng. Optim. 8, 83 (1984).

    Article  Google Scholar 

  12. C. Fleury, and V. Braibant, Structural optimization: A new dual method using mixed variables, Int. J. Numer. Meth. Eng. 23, 409 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Svanberg, The method of moving asymptotes—a new method for structural optimization, Int. J. Numer. Meth. Eng. 24, 359 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, and S. Nishiwaki, Heaviside projection based topology optimization by a PDE-filtered scalar function, Struct. Multidisc. Optim. 44, 19 (2011).

    Article  MATH  Google Scholar 

  15. J. K. Guest, J. H. Prévost, and T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Meth. Eng. 61, 238 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Young, O. M. Querin, G. P. Steven, and Y. M. Xie, 3D and multiple load case bi-directional evolutionary structural optimization (BESO), Struct. Optim. 18, 183 (1999).

    Article  Google Scholar 

  17. O. Sigmund, and K. Maute, Topology optimization approaches, Struct. Multidisc. Optim. 48, 1031 (2013).

    Article  MathSciNet  Google Scholar 

  18. M. Beckers, Topology optimization using a dual method with discrete variables, Struct. Optim. 17, 14 (1999).

    Article  Google Scholar 

  19. M. Beckers, Dual methods for discrete structural optimization problems, Int. J. Numer. Meth. Eng. 48, 1761 (2000).

    Article  MATH  Google Scholar 

  20. P. Tanskanen, The evolutionary structural optimization method: theoretical aspects, Comput. Methods Appl. Mech. Eng. 191, 5485 (2002).

    Article  MATH  Google Scholar 

  21. K. Svanberg, and M. Werme, Topology optimization by sequential integer linear programming, in: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, edited by M. P. Bendsøe, N. Olhoff, and O. Sigmund (Springer Netherlands, Dordrecht, 2006), pp. 425–436.

    Chapter  MATH  Google Scholar 

  22. R. Sivapuram, and R. Picelli, Topology optimization of binary structures using integer linear programming, Finite Elem. Anal. Des. 139, 49 (2018).

    Article  MathSciNet  Google Scholar 

  23. K. E. S. Silva, R. Sivapuram, S. Ranjbarzadeh, R. S. Gioria, E. C. N. Silva, and R. Picelli, Topology optimization of stationary fluid-structure interaction problems including large displacements via the TOBS-GT method, Struct. Multidisc. Optim. 65, 337 (2022).

    Article  MathSciNet  Google Scholar 

  24. Y. Liang, and G. Cheng, Topology optimization via sequential integer programming and Canonical relaxation algorithm, Comput. Methods Appl. Mech. Eng. 348, 64 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. C. Fang, D. Y. Gao, R. L. Sheu, and S. Y. Wu, Canonical dual approach to solving 0–1 quadratic programming problems, J. Ind. Manage. Optim. 4, 125 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Liang, K. Sun, and G. D. Cheng, Discrete variable topology optimization for compliant mechanism design via sequential approximate integer programming with trust region (SAIP-TR), Struct. Multidisc. Optim. 62, 2851 (2020).

    Article  MathSciNet  Google Scholar 

  27. X. Y. Yan, Y. Liang, and G. D. Cheng, Discrete variable topology optimization for simplified convective heat transfer via sequential approximate integer programming with trust-region, Numer. Meth Eng. 122, 5844 (2021).

    Article  MathSciNet  Google Scholar 

  28. Y. Liang, X. Y. Yan, and G. D. Cheng, Explicit control of 2D and 3D structural complexity by discrete variable topology optimization method, Comput. Methods Appl. Mech. Eng. 389, 114302 (2021).

    Article  MathSciNet  Google Scholar 

  29. Z. Chen, G. Wen, H. Wang, L. Xue, and J. Liu, Multi-resolution nonlinear topology optimization with enhanced computational efficiency and convergence, Acta Mech. Sin. 38, 421299 (2022).

    Article  MathSciNet  Google Scholar 

  30. J. Nocedal, and S. J. Wright, Numerical Optimization (Springer, New York, 2006).

    MATH  Google Scholar 

  31. K. Sun, Y. Liang, and G. Cheng, Sensitivity analysis of discrete variable topology optimization, Struct. Multidisc. Optim. 65, 216 (2022).

    Article  MathSciNet  Google Scholar 

  32. S. Deng, and K. Suresh, Multi-constrained topology optimization via the topological sensitivity, Struct. Multidisc. Optim. 51, 987 (2015).

    Article  MathSciNet  Google Scholar 

  33. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4, 1 (1964).

    Article  Google Scholar 

  34. X. Huang, and Y. M. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des. 43, 1039 (2007).

    Article  Google Scholar 

  35. M. Bendsøe, and O. Sigmund, Topology Optimization, Theory, Methods, and Applications, 2nd ed. (Springer Berlin, Heidelberg, 2004).

    MATH  Google Scholar 

  36. Y. Liang, and G. Cheng, Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code, Struct. Multidisc. Optim. 61, 411 (2019).

    Article  Google Scholar 

  37. R. Ansola Loyola, O. M. Querin, A. Garaigordobil Jiménez, and C. Alonso Gordoa, A sequential element rejection and admission (SERA) topology optimization code written in Matlab, Struct. Multidisc. Optim. 58, 1297 (2018).

    Article  MathSciNet  Google Scholar 

  38. C. Alonso, R. Ansola, and O. M. Querin, Topology synthesis of Multi-Input–Multi-Output compliant mechanisms, Adv. Eng. Software 76, 125 (2014).

    Article  Google Scholar 

  39. F. Wang, B. S. Lazarov, and O. Sigmund, On projection methods, convergence and robust formulations in topology optimization, Struct. Multidisc. Optim. 43, 767 (2011).

    Article  MATH  Google Scholar 

  40. L. Zhou, O. Sigmund, and W. Zhang, Self-supporting structure design with feature-driven optimization approach for additive manufacturing, Comput. Methods Appl. Mech. Eng. 386, 114110 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan (Grant No. 2020YFB1709401), the National Natural Science Foundation of China (Grant Nos. 12202092, 12032008, and 11821202), and the China Postdoctoral Science Foundation (Grant No. ZX20220734).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Gengdong Cheng and Yuan Liang designed the research, helped organize the manuscript, revised and edited the final version. Kai Sun wrote the first draft of the manuscript, processed the calculation data, revised and edited the final version. Kaiqing Zhang helped improve the theory.

Corresponding author

Correspondence to Yuan Liang  (梁缘).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Cheng, G., Zhang, K. et al. Sequential conservative integer programming method for multi-constrained discrete variable structure topology optimization. Acta Mech. Sin. 40, 423151 (2024). https://doi.org/10.1007/s10409-023-23151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23151-x

Navigation